9 research outputs found

    Determination of cognitive workload variation in driving from ECG derived respiratory signal and heart rate

    Get PDF
    2nd International Neuroergonomics Conference, PHILADELPHIE, ETATS-UNIS, 27-/06/2018 - 29/06/2018Research works on operator monitoring underline the benefit of taking into consideration several signal modalities to improve accuracy for an objective mental state diagnosis. Heart rate (HR) is one of the most utilized systemic measures to assess cognitive workload (CW), whereas respiration parameters are hardly utilized. This study aims at verifying the contribution of analyzing respiratory signals to extract features to evaluate driver's activity and CW variations in driving with regard to cardiac activity. Eighteen subjects participated in the study. The participants carried out two different cognitive tasks requiring different CW demands, a single task as well as a competing cognitive task realized while driving in a simulator. Our results confirm that both HR and breathing rate (BR) increase in driving and are sensitive to CW. However, HR and BR are differently modulated by the CW variations in driving. Specifically, BR is suitable to evidence a variation of CW when driving is not required. On the other hand, spectral features characterizing respiratory signal could be also used similarly to HR variability indices to detect high CW episodes. These results hint the use of respiration to monitor the driver mental state in autonomic vehicles in order to predict the available cognitive resources if the user has to take over the vehicle

    Metabolomics, lipidomics and proteomics profiling of myoblasts infected with Trypanosoma cruzi after treatment with different drugs against Chagas disease.

    Get PDF
    INTRODUCTION: Chagas disease, the most important parasitic infection in Latin America, is caused by the intracellular protozoan Trypanosoma cruzi. To treat this disease, only two nitroheterocyclic compounds with toxic side effects exist and frequent treatment failures are reported. Hence there is an urgent need to develop new drugs. Recently, metabolomics has become an efficient and cost-effective strategy for dissecting drug mode of action, which has been applied to bacteria as well as parasites, such as different Trypanosome species and forms. OBJECTIVES: We assessed if the metabolomics approach can be applied to study drug action of the intracellular amastigote form of T. cruzi in a parasite-host cell system. METHODS: We applied a metabolic fingerprinting approach (DI-MS and NMR) to evaluate metabolic changes induced by six different (candidate) drugs in a parasite-host cell system. In a second part of our study, we analyzed the impact of two drugs on polar metabolites, lipid and proteins to evaluate if affected pathways can be identified. RESULTS: Metabolic signatures, obtained by the fingerprinting approach, resulted in three different clusters. Two can be explained by already known of mode actions, whereas the three experimental drugs formed a separate cluster. Significant changes induced by drug action were observed in all the three metabolic fractions (polar metabolites, lipids and proteins). We identified a general impact on the TCA cycle, but no specific pathways could be attributed to drug action, which might be caused by a high percentage of common metabolome between a eukaryotic host cell and a eukaryotic parasite. Additionally, ion suppression effects due to differences in abundance between host cells and parasites may have occurred. CONCLUSION: We validated the metabolic fingerprinting approach to a complex host-cell parasite system. This technique can potentially be applied in the early stage of drug discovery and could help to prioritize early leads or reconfirmed hits for further development
    corecore