30 research outputs found

    The C/EBPβ LIP isoform rescues loss of C/EBPβ function in the mouse

    Get PDF
    The transcription factor C/EBPβ regulates hematopoiesis, bone, liver, fat, and skin homeostasis, and female reproduction. C/EBPβ protein expression from its single transcript occurs by alternative in-frame translation initiation at consecutive start sites to generate three isoforms, two long (LAP*, LAP) and one truncated (LIP), with the same C-terminal bZip dimerization domain. The long C/EBPβ isoforms are considered gene activators, whereas the LIP isoform reportedly acts as a dominant-negative repressor. Here, we tested the putative repressor functions of the C/EBPβ LIP isoform in mice by comparing monoallelic WT or LIP knockin mice with Cebpb knockout mice, in combination with monoallelic Cebpa mice. The C/EBPβ LIP isoform was sufficient to function in coordination with C/EBPα in murine development, adipose tissue and sebocyte differentiation, and female fertility. Thus, the C/EBPβ LIP isoform likely has more physiological functions than its currently known role as a dominant-negative inhibitor, which are more complex than anticipated

    Genetic tracing of Ca(V)3.2 T-type calcium channel expression in the peripheral nervous system

    Get PDF
    Characterizing the distinct functions of the T-type ion channel subunits Cav3.1, 3.2 or 3.3 has proven difficult due to their highly conserved amino-acid sequences and the lack of pharmacological blockers specific for each subunit. To precisely determine the expression pattern of the Cav3.2 channel in the nervous system we generated two knock-in mouse strains that express EGFP or Cre recombinase under the control of the Cav3.2 gene promoter. We show that in the brains of these animals, the Cav3.2 channel is predominantly expressed in the dentate gyrus of the hippocampus. In the peripheral nervous system, the activation of the promoter starts at E9.5 in neural crest cells that will give rise to dorsal root ganglia (DRG) neurons, but not sympathetic neurons. As development progresses the number of DRG cells expressing the Cav3.2 channel reaches around 7% of the DRG at E16.5, and remains constant until E18.5. Characterization of sensory neuron subpopulations at E18.5 showed that EGFP(+) cells are a heterogeneous population consisting mainly of TrkB(+) and TrkC(+) cells, while only a small percentage of DRG cells were TrkA(+). Genetic tracing of the sensory nerve end-organ innervation of the skin showed that the activity of the Cav3.2 channel promoter in sensory progenitors marks many mechanoreceptor and nociceptor endings, but spares slowly adapting mechanoreceptors with endings associated with Merkel cells. Our genetic analysis reveals for the first time that progenitors that express the Cav3.2 T-type calcium channel, defines a sensory specific lineage that populates a large proportion of the DRG. Using our Cav3.2-Cre mice together with AAV viruses containing a conditional fluorescent reporter (tdTomato) we could also show that Cre expression is largely restricted to two functionally distinct sensory neuron types in the adult ganglia. Cav3.2 positive neurons innervating the skin were found to only form lanceolate endings on hair follicles and are probably identical to D-hair receptors. A second population of nociceptive sensory neurons expressing the Cav3.2 gene was found to be positive for the calcitonin-gene related peptide but these neurons are deep tissue nociceptors that do not innervate the skin

    Congenital deafness is associated with specific somatosensory deficits in adolescents

    Get PDF
    Hearing and touch represent two distinct sensory systems that both rely on the transformation of mechanical force into electrical signals. Here we used a battery of quantitative sensory tests to probe touch, thermal and pain sensitivity in a young control population (14-20 years old) compared to age-matched individuals with congenital hearing loss. Sensory testing was performed on the dominant hand of 111 individuals with normal hearing and 36 with congenital hearing loss. Subjects with congenital deafness were characterized by significantly higher vibration detection thresholds at 10 Hz (2-fold increase, P < 0.001) and 125 Hz (P < 0.05) compared to controls. These sensory changes were not accompanied by any major change in measures of pain perception. We also observed a highly significant reduction (30% compared to controls p < 0.001) in the ability of hearing impaired individual's ability to detect cooling which was not accompanied by changes in warm detection. At least 60% of children with non-syndromic hearing loss showed very significant loss of vibration detection ability (at 10 Hz) compared to age-matched controls. We thus propose that many pathogenic mutations that cause childhood onset deafness may also play a role in the development or functional maintenance of somatic mechanoreceptors

    C/EBP-induced transdifferentiation reveals granulocyte-macrophage precursor-like plasticity of B cells

    Get PDF
    The lymphoid-myeloid transdifferentiation potentials of members of the C/EBP family (C/EBP{alpha}, {beta}, {delta}, and {epsilon}) were compared in v-Abl-immortalized primary B cells. Conversion of B cells to macrophages was readily induced by the ectopic expression of any C/EBP, and enhanced by endogenous C/EBP{alpha} and {beta} activation. High transgene expression of C/EBP{beta} or C/EBP{epsilon}, but not of C/EBP{alpha} or C/EBP{delta}, also induced the formation of granulocytes. Granulocytes and macrophages emerged in a mutually exclusive manner. C/EBP{beta}-expressing B cells produced granulocyte-macrophage progenitor (GMP)-like progenitors when subjected to selective pressure to eliminate lymphoid cells. The GMP-like progenitors remained self-renewing and cytokine-independent, and continuously produced macrophages and granulocytes. In addition to their suitability to study myelomonocytic lineage bifurcation, lineage-switched GMP-like progenitors could reflect the features of the lympho-myeloid lineage switch observed in leukemic progression

    Deregulation of the endogenous C/EBPβ LIP isoform predisposes to tumorigenesis

    Get PDF
    Two long and one truncated isoforms (termed LAP*, LAP, and LIP, respectively) of the transcription factor CCAAT enhancer binding protein beta (C/EBPbeta) are expressed from a single intronless Cebpb gene by alternative translation initiation. Isoform expression is sensitive to mammalian target of rapamycin (mTOR)-mediated activation of the translation initiation machinery and relayed through an upstream open reading frame (uORF) on the C/EBPbeta mRNA. The truncated C/EBPbeta LIP, initiated by high mTOR activity, has been implied in neoplasia, but it was never shown whether endogenous C/EBPbeta LIP may function as an oncogene. In this study, we examined spontaneous tumor formation in C/EBPbeta knockin mice that constitutively express only the C/EBPbeta LIP isoform from its own locus. Our data show that deregulated C/EBPbeta LIP predisposes to oncogenesis in many tissues. Gene expression profiling suggests that C/EBPbeta LIP supports a pro-tumorigenic microenvironment, resistance to apoptosis, and alteration of cytokine/chemokine expression. The results imply that enhanced translation reinitiation of C/EBPbeta LIP promotes tumorigenesis. Accordingly, pharmacological restriction of mTOR function might be a therapeutic option in tumorigenesis that involves enhanced expression of the truncated C/EBPbeta LIP isoform. KEY MESSAGE: Elevated C/EBPbeta LIP promotes cancer in mice. C/EBPbeta LIP is upregulated in B-NHL. Deregulated C/EBPbeta LIP alters apoptosis and cytokine/chemokine networks. Deregulated C/EBPbeta LIP may support a pro-tumorigenic microenvironment

    Immune competence and spleen size scale with colony status in the naked mole-rat

    Get PDF
    Naked mole-rats (NM-R; Heterocephalus glaber) live in multi-generational colonies with a social hierarchy, show low cancer incidence and long life-spans. Here we asked if an immune component might underlie such extreme physiology. The largest lymphoid organ is the spleen which plays an essential role in responding to immunological insults and may participate in combating cancer and slowing ageing. We investigated the anatomy, molecular composition and function of the NM-R spleen using RNA-sequencing and histological analysis in healthy NM-Rs. Spleen size in healthy NM-Rs showed considerable inter-individual variability, with some animals displaying enlarged spleens. In all healthy NM-Rs the spleen is a major site of adult hematopoiesis under normal physiological conditions. However, myeloid to lymphoid cell ratio is increased and splenic marginal zone showed markedly altered morphology when compared to other rodents. Healthy NM-Rs with enlarged spleens showed potentially better anti-microbial profiles and were much more likely to have a high rank within the colony. We propose that the anatomical plasticity of the spleen might be regulated by social interaction and gives immunological advantage to increase the life-span of higher ranked animals

    Lack of evidence for participation of TMEM150C in sensory mechanotransduction

    Get PDF
    The membrane protein TMEM150C has been proposed to form a mechanosensitive ion channel that is required for normal proprioceptor function. Here, we examined whether expression of TMEM150C in neuroblastoma cells lacking Piezo1 is associated with the appearance of mechanosensitive currents. Using three different modes of mechanical stimuli, indentation, membrane stretch, and substrate deflection, we could not evoke mechanosensitive currents in cells expressing TMEM150C. We next asked if TMEM150C is necessary for the normal mechanosensitivity of cutaneous sensory neurons. We used an available mouse model in which the Tmem150c locus was disrupted through the insertion of a LacZ cassette with a splice acceptor that should lead to transcript truncation. Analysis of these mice indicated that ablation of the Tmem150c gene was not complete in sensory neurons of the dorsal root ganglia (DRG). Using a CRISPR/Cas9 strategy, we made a second mouse model in which a large part of the Tmem150c gene was deleted and established that these Tmem150c(-/-) mice completely lack TMEM150C protein in the DRGs. We used an ex vivo skin nerve preparation to characterize the mechanosenstivity of mechanoreceptors and nociceptors in the glabrous skin of the Tmem150c(-/-) mice. We found no quantitative alterations in the physiological properties of any type of cutaneous sensory fiber in Tmem150c(-/-) mice. Since it has been claimed that TMEM150C is required for normal proprioceptor function, we made a quantitative analysis of locomotion in Tmem150c(-/-) mice. Here again, we found no indication that there was altered gait in Tmem150c(-/-) mice compared to wild-type controls. In summary, we conclude that existing mouse models that have been used to investigate TMEM150C function in vivo are problematic. Furthermore, we could find no evidence that TMEM150C forms a mechanosensitive channel or that it is necessary for the normal mechanosensitivity of cutaneous sensory neurons

    Small-molecule inhibition of STOML3 oligomerization reverses pathological mechanical hypersensitivity

    Get PDF
    The skin is equipped with specialized mechanoreceptors that allow the perception of the slightest brush. Indeed, some mechanoreceptors can detect even nanometer-scale movements. Movement is transformed into electrical signals via the gating of mechanically activated ion channels at sensory endings in the skin. The sensitivity of Piezo mechanically gated ion channels is controlled by stomatin-like protein-3 (STOML3), which is required for normal mechanoreceptor function. Here we identify small-molecule inhibitors of STOML3 oligomerization that reversibly reduce the sensitivity of mechanically gated currents in sensory neurons and silence mechanoreceptors in vivo\textit{in vivo}. STOML3 inhibitors in the skin also reversibly attenuate fine touch perception in normal mice. Under pathophysiological conditions following nerve injury or diabetic neuropathy, the slightest touch can produce pain, and here STOML3 inhibitors can reverse mechanical hypersensitivity. Thus, small molecules applied locally to the skin can be used to modulate touch and may represent peripherally available drugs to treat tactile-driven pain following neuropathy.This study was funded by DFG collaborative research grant SFB958 (projects A09 to K.P. and G.R.L., A01 to V.H. and Z02 to J.S.). Additional support was provided by a senior ERC grant (grant number 294678 to G.R.L.) and by the NeuroCure Cluster of Excellence (to V.H., G.R.L. and J.F.A.P.). K.P. was supported by a Cecile-Vogt Fellowship (MDC). S.P. was supported by a Marie Curie Fellowship from the European Union (grant number 253663 Touch in situ). C.P. received a Ph.D. fellowship from the University of Cagliari. J.F.A.P. was funded by a European Research Council (ERC) starting grant (ERC-2010-StG-260590), the DFG (FOR 1341, FOR 2143), the Berlin Institute of Health (BIH) and the European Union (FP7, 3x3Dimaging 323945). R.K. was supported by an ERC Advanced Investigator grant (294293-PAIN PLASTICITY). D.H. was funded by the Berlin Institute of Health (BIH). E.St.J.S., L.E. and M.M. were supported by an Alexander von Humboldt Fellowship

    In Vivo Deficiency of Both C/EBPβ and C/EBPε Results in Highly Defective Myeloid Differentiation and Lack of Cytokine Response

    Get PDF
    The CCAAT/enhancer binding proteins (C/EBPs) are transcription factors involved in hematopoietic cell development and induction of several inflammatory mediators. Here, we generated C/EBPβ and C/EBPε double-knockout (bbee) mice and compared their phenotypes to those of single deficient (bbEE and BBee) and wild-type (BBEE) mice. The bbee mice were highly susceptible to fatal infections and died within 2–3 months. Morphologically, their neutrophils were blocked at the myelocytes/metamyelocytes stage, and clonogenic assays of bone marrow cells indicated a significant decrease in the number of myeloid colonies of the bbee mice. In addition, the proportion of hematopoietic progenitor cells [Lin(−)Sca1(+)c-Kit(+)] in the bone marrow of the bbee mice was significantly increased, reflecting the defective differentiation of the myeloid compartment. Furthermore, microarray expression analysis of LPS- and IFNγ-activated bone marrow-derived macrophages from bbee compared to single knockout mice revealed decreased expression of essential immune response-related genes and networks, including some direct C/EBP-targets such as Marco and Clec4e. Overall, the phenotype of the bbee mice is distinct from either the bbEE or BBee mice, demonstrating that both transcription factors are crucial for the maturation of neutrophils and macrophages, as well as the innate immune system, and can at least in part compensate for each other in the single knockout mice
    corecore