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Summary 28 

The skin is equipped with specialized mechanoreceptors that allow the perception of the 29 

slightest brush. Indeed some mechanoreceptors can detect even nanometer-scale movements. 30 

Movement is transformed into electrical signals via the gating of mechanically-activated ion 31 

channels at sensory endings in the skin. The sensitivity of Piezo mechanically-gated ion 32 

channels are controlled by stomatin-like protein-3 (STOML3), which is required for normal 33 

mechanoreceptor function. Here we identify small molecule inhibitors of STOML3 34 

oligomerization that reversibly reduce the sensitivity of mechanically-gated currents in 35 

sensory neurons and silence mechanoreceptors in vivo. STOML3 inhibitors in the skin also 36 

reversibly attenuate fine touch perception in normal mice. Under pathophysiological 37 

conditions following nerve injury or diabetic neuropathy the slightest touch can produce pain, 38 

and here STOML3 inhibitors can reverse mechanical hypersensitivity. Thus, small molecules 39 

applied locally to the skin can be used to modulate touch and may represent peripherally 40 

available drugs to treat tactile-driven pain following neuropathy. 41 
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Introduction 57 

All skin sensation starts with the transformation of a physical stimulus into an electrical 58 

signal called a receptor potential. The receptor potential is encoded as action potentials (AP), 59 

which convey information to the brain to initiate perception1. Currently pharmacological 60 

agents that modulate the first step in the transformation of light touch stimuli into an 61 

electrical signal, a process called sensory mechanotransduction, are not available. The 62 

mechanosensitive ion channel Piezo2 and its modulator STOML32 have both been shown to 63 

be necessary for mechanoreceptors to transduce light touch3–6. Paradoxically, under 64 

pathophysiological conditions, intense pain can also be triggered by light touch7,8, for 65 

example after traumatic nerve injury9. Nerve injury induced touch-evoked pain was found to 66 

be largely absent in Stoml3-/- mutant mice6. STOML3 is an endogenous regulator of the 67 

sensitivity of mechanosensitive ion channels like Piezo in sensory neurons and STOML3 68 

self-association appears to be necessary for this function10,11. Interestingly, Piezo2 has an 69 

essential role in human proprioception and touch sensation12,13. Therefore we set out to 70 

discover and test whether small molecules that can disrupt STOML3 self-association can be 71 

used to modulate touch under normal and pathophysiological conditions.  72 

Identification of small molecule STOML3 inhibitors 73 

In mammals STOML3 belongs to a family of five structurally conserved membrane proteins, 74 

including Stomatin, STOML1, STOML2, and Podocin10,14–18, all of which self-associate via 75 

their stomatin-domain (Supplementary Fig. S1a)10. Self-association of stomatin-domain 76 

proteins can be monitored in HEK293 cells using Bimolecular Fluorescence 77 

Complementation (BiFC) whereby N- and C-terminal halves of the YFP molecule are tagged 78 

to the prey and bait protein STOML32,19  (Fig. 1a). Irreversible association of the YFP 79 

fragments produces fluorescence that increases linearly over time (Fig. 1 b). Mutations in one 80 

STOML3 pair that disrupt oligomerization (V190P or LR89,90EE) significantly reduce the 81 



rate of signal development (Fig.  1b)2,10. We used this cellular assay in a high throughput 82 

format to screen for small molecules that significantly inhibit the BiFC signal, a measure of 83 

STOML3 self-association. In a primary screen of about 35000 small molecules (each at 20 84 

µM), obtained from the central compound collection of the Leibniz Institute for Molecular 85 

Pharmacology screening unit (www.chembionet.info), 21 molecules were found to 86 

reproducibly decrease STOML3 self-association based on the slope of YFP signal 87 

development. Of these 21 molecules 19 did not pass stringent control tests (see Materials and 88 

Methods). The two remaining inhibitory compounds were designated Oligomerization 89 

Blocker 1 and 2, (OB-1 and OB-2) (Fig. 1d,e). In further BiFC assays, the STOML3 90 

oligomerization blocker, OB-1 was an effective inhibitor of the self-association of Stomatin, 91 

STOML1, STOML2, but not Podocin (Supplementary Fig. 1a). Lower OB-1 concentrations 92 

(2 µM) also inhibited the BiFC signal (Supplementary Fig. 1b). The OB-1 molecule was also 93 

re-synthesized in house and exhibited the same activity in the BiFC assay as the 94 

commercially available sample. The human STOML3 peptide sequence is 92% identical to 95 

that of the mouse and 100% identical in the core stomatin-domain and human STOML3 also 96 

showed self-association (Fig. 1f). More importantly for potential future clinical development 97 

self-association of the human STOML3 protein was also inhibited by OB-1 (Fig 1f). 98 

STOML3 oligomerization dictates domain size in the plasma membrane 99 

We next asked if OB-1 and OB-2 modulation of STOML3 oligomerization state influences 100 

clustering of the protein in the plasma membrane. We used super-resolution dSTORM 101 

microscopy20–22 to visualize FLAG–tagged STOML3 at the plasma membrane of transfected 102 

N2a cells. Using dSTORM we could show that STOML3 was present in microdomains at the 103 

plasma membrane (Fig. 1g). The size of the STOML3 clusters was variable (full width at half 104 

maximum, FWHM = 24.6 ± 2.8 nm, mean ± sem, Fig. 1h.) but these domains may contain 105 

more than one STOML3 dimer10. Introduction of the V190P mutation disrupts 106 



oligomerization of STOML3 and abolishes its ability to modulate the mechanosensitivity of 107 

Piezo1 channels2. This STOML3 variant exhibited significantly smaller clusters in the plasma 108 

membrane (Fig. 1g,h), demonstrating that by disrupting STOML3 oligomerization we can 109 

manipulate and measure nanoscale changes in STOML3 cluster size. Pre-incubation of N2a 110 

cells expressing STOML3-FLAG with OB-1 or OB-2 for three hours led to significantly 111 

reduced STOML3-FLAG cluster sizes compared to vehicle treated cells (Fig. 1g,h). The 112 

effects of OB-1 did not produce changes in Stoml3 mRNA levels in these cells 113 

(Supplementary Fig. 2a). Thus we obtained independent support for the notion that OB-1 and 114 

OB-2 reduce STOML3 oligomerization state, an important consequence of which is a 115 

reduced STOML3 cluster size at the plasma membrane. 116 

STOML3 inhibitors modulate mechanotransduction currents 117 

Endogenously expressed STOML3 in N2a cells is required to maintain Piezo channel 118 

sensitivity to membrane deflection2. By precisely deflecting defined areas of the membrane-119 

substrate interface using a pillar array we could activate Piezo1 currents in N2a cells with 120 

displacements ranging from 100 - 1000 nm (Fig. 2a,b). Both OB-1 and OB-2 reduced the 121 

sensitivity of mechanosensitive currents to pillar deflection (Fig. 2b). Pre-incubation of cells 122 

with OB-1 for periods of between 1 and 3 h reduced Piezo1 current amplitudes, but the effect 123 

was only maximal after 3 h (Supplementary Fig. 2b). Recording mechanically-activated 124 

currents in the presence of different concentrations of OB-1 revealed a steep concentration 125 

dependence with a calculated IC50 of 10 nM, Hill coefficient 0.6 (Fig. 2c). 126 

Next we evaluated the effects of OB-1 and OB-2 on mechanosensitive currents in acutely 127 

cultured mouse sensory neurons. Neurons were classified on the basis of their AP 128 

configuration as mechanoreceptors or nociceptors2,23. We found that mechanically gated 129 

currents in mechanoreceptors start to activate with membrane deflections of < 50 nm2, but 130 

this sensitivity was substantially reduced after exposure to OB-1 or OB-2 (Fig. 2 d,e). Thus 131 



significant mechanically gated currents were only observed in OB-1 or OB-2 treated cells 132 

with deflections that exceeded 100 nm. The threshold for activation of mechanosensitive 133 

currents in nociceptive sensory neurons is normally higher than that of mechanoreceptors2 a 134 

finding reproduced here (Fig. 2e,f). However, we also observed that OB-1 or OB-2 treatment 135 

produced a significant reduction in the amplitude of mechanically gated currents in 136 

nociceptors with stimulus magnitudes between 100 and 500 nm (Fig. 2f). In addition the 137 

latency for mechanically gated currents as well as the activation time constant for current 138 

activation τ1 was significantly slowed in nociceptors after treatment with OB-2 139 

(Supplementary Fig. 2 c,d). The exposure of N2a cells or sensory neurons to OB-1 for 3h did 140 

not lead to any changes in the level of Stoml3 transcripts (Supplementary Fig. 2a), suggesting 141 

that our molecules change gene expression, or transcript stability. Cell soma indentation can 142 

also be used to evoke so called Rapidly-adapting currents (RA-currents, inactivation constant 143 

τ2 < 5 ms) in mechanoreceptor sensory neurons23,24 and after exposure to OB-1 ~ 60% of the 144 

neurons (12/21 neurons) displayed no mechanosensitive current compared to control or 145 

vehicle treated neurons (21%, 8/38 neurons), this effect was statistically significant (Fisher’s 146 

exact test p < 0.01 Supplementary Fig. 3a-e). Neither of the two compounds tested had any 147 

discernable effects on voltage-gated currents or membrane excitability as evidenced by the 148 

fact that APs were of normal amplitude and shape after treatment (Fig. 2h,i). For example, 149 

cultured sensory neurons treated for at least 3 h with 20 µM OB-1 displayed no alteration in a 150 

number of parameters indicative of electrical excitability (Fig 2g-i, Supplementary Table 1). 151 

In summary, using two independent assays we found that OB-1 is a powerful inhibitor of 152 

native mechanosensitive currents. Stomatin-domain proteins can also negatively regulate 153 

members of the acid sensing ion channel family (ASICs) in a subunit-specific manner 154 

6,10,25,26. However, OB-1 had no detectable effect on the negative modulation of ASIC3 155 

mediated currents by mouse Stomatin (Supplementary Fig. 4).  156 



A STOML3 inhibitor can silence touch receptors 157 

Many cutaneous mechanoreceptors in Stoml3-/- mice innervate the skin, but cannot be 158 

activated by mechanical stimulation5,6. We made subcutaneous injections of the OB-1 159 

compound (250 - 500 pmol per paw) into the mouse hairy skin innervated by the saphenous 160 

nerve and recorded from sensory afferents 3 h later using an ex vivo skin - nerve 161 

preparation5,27. In wild type mice the vast majority of myelinated and unmyelinated fibers are 162 

mechanosensitive4–6, demonstrated by tracing the spike evoked by local electrical stimulation 163 

of nerve branches and then searching for the nearby mechanosensitive receptive field (Fig. 164 

3a). In contrast, in skin pre-treated with OB-1 over 39% of Aβ-fibers (19/44) lacked a 165 

mechanosensitive receptive field, and this was significantly different from vehicle-injected 166 

controls where less than 7% (5/69 fibers) were found to be insensitive to mechanical stimuli, 167 

p < 0.001 Fischer’s exact test (Fig. 3a,  Supplementary Table 2). An almost identical 168 

proportion of OB-1 treated Aβ-fibers were insensitive to mechanical stimuli in female mice 169 

as in male mice (Fig. 3a). Amongst the Aδ-fibers we also observed an increase in the 170 

proportion of fibers for which no mechanosensitive receptive field could be found (21%, 8/38 171 

fibers compared to 6%, 1/19 fibers in controls, but this was not significantly different; 172 

Fischer’s exact test, p > 0.24). There was also no change in the proportion of C-fibers that 173 

lack a mechanosensitive receptive field (Fig. 3a). We next examined the physiological 174 

properties of the remaining mechanosensitive afferents in OB-1 treated skin. However, the 175 

proportion of mechanoreceptor types found, as well as the mechanosensitivity of the 176 

remaining Aβ-fiber mechanoreceptors (Rapidly and Slowly adapting mechanoreceptors, 177 

RAMs and SAMs) was unchanged compared to controls (Supplementary Fig. 5a-e). The 178 

mechanoreceptor silencing effect of local OB-1 treatment was completely reversible as 179 

recordings from afferents 24 h after treatment revealed no significant loss of 180 

mechanosensitivity, also compared to vehicle treated skin (Fig. 3a). Thus, a STOML3 181 



oligomerization inhibitor can specifically and reversibly silence touch receptor activity 182 

without changing axonal excitability. 183 

Although, we found no evidence that C-fiber nociceptors are silenced by OB-1 treatment 184 

(Fig. 3a) we did note a statistically significant effect of local OB-1 treatment on the 185 

mechanosensitivity of C-fiber afferents that respond to both thermal and mechanical stimuli 186 

(C-mechanoheat fibers, C-MH, Two-way ANOVA, p < 0.05) (Fig. 3b). C-mechanoheat 187 

fibers also displayed significantly elevated mechanical thresholds for activation that were on 188 

average almost twice that of control fibers (196.5 ± 35.6 mN, mean ± sem in OB-1 treated 189 

skin vs 106.9 ± 17.4 mN, mean ± sem in vehicle treated skin, Mann-Whitney U test, p < 0.05) 190 

as measured using a force measurement system attached to the stimulus probe (Fig. 3c). The 191 

firing rates of C-mechanonociceptors (C-Ms) that lack heat sensitivity, to suprathreshold 192 

mechanical stimuli were not significantly attenuated in OB-1 treated skin (Fig. 3d,e).  193 

Touch perception is attenuated by local OB-1 treatment 194 

We used a tactile perception task in head-restrained mice to assess the effects of OB-1 on 195 

touch sensation. Water-restricted mice were trained to press a sensor with their forepaw 196 

within 500 ms after the onset of a 30 ms cosine mechanical stimulus applied to the same paw. 197 

Correct responses were rewarded with water. Mice learned this task to a high degree of 198 

reliability after a 7-10 day training period (Fig. 4a). Different stimulus amplitudes were then 199 

used to determine a psychometric curve for each mouse (Fig. 4a,b). We next injected the drug 200 

vehicle solution into the forepaw and obtained a new psychometric curve for each mouse 3 - 201 

5 h later. On the next day, the forepaw was injected with the OB-1 compound (11 nmol per 202 

paw) followed by behavioral testing. At least 24 h after the OB-1 testing day, the recovery 203 

behavior was tested without any prior injection. Following OB-1 treatment the psychometric 204 

curve was shifted to the right for stimulus strengths between 125-275 µm indicating less 205 

reliable stimulus detection (Wilcoxon Signed Rank Test, vehicle vs OB-1, p = 0.026; OB-1 vs 206 



recovery, p = 0.0043) (Fig. 4 b,c). Vehicle treatment produced no significant change in the 207 

psychometric curve (Wilcoxon Signed Rank Test, control vs vehicle p = 0.30). The detection 208 

rates of threshold stimuli returned to pre-treatment levels 1-4 d after treatment (Wilcoxon 209 

Signed Rank Test, vehicle vs recovery, p = 0.12). These data indicate that silencing of a 210 

subset of mechanoreceptors via STOML3 inhibition is sufficient to reduce the reliability of 211 

near threshold touch perception in mice. 212 

Peripheral STOML3 blockade reverses tactile allodynia 213 

Neuropathic pain is a debilitating condition in which intense pain can be initiated by merely 214 

brushing the skin, activating low-threshold mechanoreceptors7–9,28,29. We used the chronic 215 

constriction injury model (CCI), which involves direct damage to sciatic nerve axons 216 

(Supplementary Fig. 6a-f) that innervate the hypersensitive plantar hindpaw skin. Baseline 217 

paw withdrawal thresholds in wild type and Stoml3-/- mice did not differ, as measured with 218 

von Frey hairs using an adapted up-down method30 (Fig. 5a). However, after induction of a 219 

unilateral CCI9, paw withdrawal thresholds dropped profoundly in wild type mice but were 220 

only moderately reduced in Stoml3-/- mice, Two-way ANOVA, p < 0.001 (Fig. 5a). Thermal 221 

hyperalgesia also accompanies neuropathic injury7,9,31, a phenomenon that we also observed. 222 

However, the heat hyperalgesia observed in Stoml3-/- mice was identical to that in wild type 223 

controls (Fig. 5b).  224 

We next asked whether local application of OB-1 can ameliorate tactile-evoked pain behavior 225 

in neuropathic models. We found no change in paw withdrawal thresholds to mechanical 226 

stimuli in the paws of naïve mice treated with an intraplantar dose of OB-1 (250 - 500 pmol 227 

per paw) (Fig. 5c). However, when we applied an intraplantar dose of OB-1 to the paws of 228 

wild type mice with established neuropathic pain (CCI model 6 - 21 days after induction) we 229 

observed a complete reversal of the tactile-evoked pain or allodynia, 0.15 ± 0.06 g (CCI) vs 230 

0.7125 ± 0.12 g (OB-1 treated p = 0.0028; paired t-test (Fig. 5d). The effects of OB1 were 231 



also indistinguishable on female and male mice with CCI (Fig 5d)32. We also applied OB-1 to 232 

the contralateral paw at the same concentration that was effective at reversing allodynia 233 

present in the paw ipsilateral to the injury, but observed no reversal of established 234 

hypersensitivity (Fig 5e). These results suggest that the actions of OB-1 in reversing 235 

hypersensitivity are due to inhibition of sensory neuron mechanotransduction in the skin and 236 

not to systemic or central actions. The reversal of tactile allodynia observed with local OB-1 237 

treatment was indistinguishable from that found with systemic gabapentin treatment (Fig. 5f), 238 

a standard, centrally acting drug, in clinical use for the treatment of neuropathic pain 33. 239 

Using a series of OB-1 concentrations we could determine a half-maximal effective dose 240 

(ED50) of 4.42 µM (or approximately 20 pmol per paw) (Fig. 5g). The effects of a single OB-241 

1 dose became maximal 3 h after the injections and wore off slowly over the next 12 h so that 242 

the effect was absent after 24 h (Fig. 5h). To test the idea that OB-1 reverses mechanical 243 

hypersensitivity primarily by inhibiting STOML3 oligomerization we tested the effects of 244 

local OB-1 on the mechanical sensitivity of Stoml3-/- mice with CCI. Mechanical 245 

hypersensitivity following CCI is much less prominent in Stoml3-/- mice (Fig. 5a,i) but we 246 

observed no change in paw withdrawal threshold after treatment of neuropathic paws of 247 

Stoml3-/- mice with OB-1 (Fig. 5i). Off-target effects are an issue for any biologically active 248 

small molecule. We therefore tested the effects of 20µM OB-1 in a commercially available in 249 

vitro pharmacology panel (www.cerep.fr) consisting of 79 receptors and ion channels (see 250 

Supplementary Dataset 1). Significant inhibition of specific ligand binding to the selected 251 

receptors was seen in a few cases (6/79), but there is at present no data implicating any of 252 

these receptors in peripheral nociception. The agreement between the in vitro and in vivo 253 

effects of STOML3 inhibition and the results of genetic ablation of the Stoml3 in the mouse 254 

suggest that OB-1 exerts its biological effects primarily on STOML3. The remarkable 255 

protection from touch-evoked pain in animals lacking STOML3 led us to hypothesize that the 256 



nerve injury may itself lead to a change in the levels of Stoml3 mRNA expression in the 257 

DRG. Up-regulation of STOML3 could in turn exacerbate touch-evoked pain by enhancing 258 

the sensitivity of mechanotransduction in injured sensory afferents. Using real-time 259 

quantitative PCR we measured a doubling in Stoml3 mRNA expression levels in the lumbar 260 

DRGs that project axons to the ligation site compared to the control uninjured side (p<0.01; 261 

Mann-Whitney U-test) (Fig. 5j).  262 

The CCI model involves direct damage to the axons that innervate the hypersensitive skin, in 263 

this case the plantar hindpaw34. Neuropathic touch hypersensitivity is also induced in the 264 

same skin area by cutting adjacent nerves to the tibial nerve that innervates the plantar foot 265 

35,36. Spared tibial nerve injury (SNI) mice develop a long lasting hypersensitivity of similar 266 

magnitude to that observed following CCI (Supplementary Fig. 7a). Administration of OB-1 267 

to the plantar skin in the SNI model produced no reversal of allodynia (Supplementary Figure 268 

7b). We removed the lumbar DRGs from these animals and found no change in the levels of 269 

Stoml3 mRNA between the injured and uninjured side in this model (Supplementary Fig.7c). 270 

This finding suggests that the effects of OB-1 in alleviating mechanical hypersensitivity may 271 

in part depend on whether STOML3 levels are up-regulated.  272 

Mechanical hyperalgesia is also a prominent feature in inflammatory pain, which is largely 273 

dependent on increased nerve growth factor (NGF) levels37. Systemic dosing with NGF (1 274 

mg/kg) is sufficient to provoke long-lasting mechanical and heat hyperalgesia37,38, which 275 

were both unchanged in NGF-injected Stoml3-/- mice (Supplementary Fig. 7d,e). 276 

Additionally, mechanical hypersensitivity after NGF was also not reversed by local 277 

intraplantar OB-1 (Supplementary Fig. 7f,g). This data is consistent with the prevailing view 278 

that NGF-dependent cutaneous mechanical hyperalgesia is primarily driven by central 279 

sensitization37,39.  280 

Regulation of Stoml3 mRNA and protein after injury 281 



The levels of Stoml3 mRNA are very low in the DRG and we have never found an antibody 282 

that is sensitive or specific enough to detect endogenous STOML3. We therefore generated 283 

two new knock-in mouse models to monitor in the first case Stoml3 gene expression and in 284 

the second case STOML3 protein. We created a knockin allele in which a β-galactosidase 285 

cassette with a nuclear localization signal (NLS) was fused in frame with the start codon of 286 

the Stoml3 gene (Stoml3lacZ mice) (Supplementary Fig. 8 a-c). This reporter allele allowed us 287 

to visualize subsets of sensory neurons that express Stoml3 (Fig. 6a). We observed lacZ 288 

staining in around half of sensory neurons with cell bodies > 20 µm in diameter, a population 289 

known to consist of mechanoreceptors (Fig. 6a). The number of lacZ-positive neurons more 290 

than doubled in the L6-L4 ganglia after a unilateral CCI challenge and the cells were 291 

predominantly > 20 µm in diameter, Fisher’s exact test, p < 0.0001 (Fig. 6b). This data is 292 

consistent with the idea that chronic nerve constriction leads to an increase in the number of 293 

large and medium sized sensory neurons that express higher levels of Stoml3. Consistent with 294 

our observation that Stoml3 mRNA levels are very low in the DRG, the LacZ-positive cells 295 

were difficult to visualize when screening for β-galactosidase activity and antibodies directed 296 

against the β-galactosidase protein did not give staining. It was therefore difficult to obtain  a 297 

neurochemical profile of Stoml3 expressing sensory neurons. 298 

In the second knock-in mouse we introduced nucleotides encoding the StrepII tag40  3’ to the 299 

start codon (Fig 6c, Supplementary Fig. 8d-f). The genomic fusion was successful as we 300 

could amplify Stoml3 mRNA transcripts containing the nucleotide sequence encoding an N-301 

terminally StrepII-tagged Stoml3. We carried out Western blotting for the StrepII-tagged 302 

protein in Stoml3StrepII CCI mice and extracted protein from sciatic nerve at day 2, day 6 and 303 

day 13 post-injury. We could detect a specific band (absent in Stoml3-/- nerve) of the 304 

appropriate molecular weight in protein extracts from the sciatic nerve, but only after using a 305 

strong denaturing buffer containing 8M urea (Fig 6d). We could sometimes detect the 306 



StrepII-STOML3 band from extracts made from DRG but this was much weaker and less 307 

reliable (data not shown). Notably, we found more intense -STOML3-StrepII positive bands 308 

on the injured side at day 2, day 6 and to a lesser extent at day 13 compared to the non-309 

injured contralateral nerve (Fig. 6d). The fact that the neuronal marker PGP9.5 band, 310 

dramatically decreased in intensity on the injured side several days after injury, probably 311 

reflects axon loss and atrophy, despite this STOML3 levels were increased. These results 312 

suggest that endogenous STOML3 is transported preferentially to the peripheral endings of 313 

sensory neurons41 to modulate mechanotransduction and that there is more STOML3 314 

transported to sensory endings after traumatic nerve injury. 315 

STOML3 and painful diabetic neuropathy   316 

Neuropathy is a prominent symptom of diabetes, and is often characterized by pain initiated 317 

by normally innocuous tactile stimulation in up to 20% of all patients42. We next asked 318 

whether OB-1 shows efficacy in a mouse model of painful diabetic neuropathy. We used the 319 

streptozotocin model (STZ) to induce mechanical hypersensitivity in mice with diabetes43. 320 

Between 6-7 weeks after STZ treatment, mice assigned to the drug and vehicle group began 321 

to display hypersensitivity to mechanical stimuli as reflected in increased frequency of paw 322 

withdrawal to von Frey filaments below 0.5 g (Fig. 7 a-d). Local treatment of the hindpaw 323 

glabrous skin with OB-1 (250 pmol per paw) substantially reversed the mechanical 324 

hypersensitivity 4 h after treatment whereas vehicle treatment was without effect (Fig 7a-d), 325 

PWT = 0.93 ± 0.13 g (OB-1 treated) vs 0.32 ± 0.06 (STZ), paired t-test, p = 0.0013 (Fig. 7b) 326 

or PWT = 0.63± 0.13 g (vehicle treated) vs 0.51± 0.01 (STZ), paired t-test, p = 0.31  (Fig. 327 

7d). The mechanical hypersensitivity returned to pre-drug treatment levels 24 h after a single 328 

treatment, as assessed by the mean 60% withdrawal threshold (Fig. 7a,b). 329 

 330 

 331 



Discussion   332 

Mammalian touch sensation is at last beginning to be unraveled at the molecular level44,45. 333 

Mechanosensitive ion channels, like Piezo1 and Piezo2, may prove difficult targets to exploit 334 

for pharmacological intervention46. For example, the early embryonic or post-natal lethality 335 

associated with Piezo1 or Piezo2 gene deletion47,48 and Piezo2’s role in proprioception12,13,49 336 

could prove problematic for the development of Piezo antagonists for therapeutic purposes. 337 

Here we describe an intersectional approach to modulate sensory mechanotransduction as our 338 

compounds should only be effective in cells in which both STOML3 and Piezo channels are 339 

present. This approach has the advantage that essential functions of Piezo proteins will not be 340 

directly affected by our small molecules yet we can gain selective and powerful inhibition of 341 

sensory mechanotransduction, especially under some pathophysiological conditions. We 342 

show that OB-1 has a powerful silencing effect on around 40% of mechanoreceptors and 343 

conclude that the transformation of the mechanical stimulus into receptor potential is severely 344 

impaired in these cells. Mechanosensitive currents were also inhibited by OB-1 in some 345 

nociceptors in our in vitro studies (Fig. 2f) and consistent with this mechanical thresholds 346 

were significantly elevated in many cutaneous C-fibers measured using the ex vivo skin-nerve 347 

preparation (Fig. 3). We propose that STOML3 inhibition silences mechanoreceptors 348 

primarily by reducing the displacement sensitivity of Piezo2 ion channels in 349 

mechanoreceptors. Mechanically gated currents in nociceptors may not be dependent on 350 

Piezo24, but deep sequencing studies have detected Piezo1 transcripts in many single mouse 351 

sensory neurons50 and Piezo1 channels are also strongly modulated by STOML32. Skin 352 

application of our STOML3 inhibitor OB-1 shows remarkable efficacy in reducing touch-353 

evoked pain behavior in two mouse models of neuropathic pain, but not in an SNI model. 354 

There is direct damage to the axons that innervate the sensitized skin in the CCI model that is 355 

associated with increased Stoml3 expression as well as increased STOML3 protein transport 356 



to the periphery (Fig. 6). Thus, we speculate that the remarkable efficacy of OB-1 in some 357 

pain models, including painful diabetic neuropathy is directly linked to changes in STOML3 358 

availability at sensory endings during disease progression. Stoml3 mRNA transcript 359 

expression has been detected in human tibial nerve and skin (http://gtexportal.org) and so it 360 

may be possible to detect changes in STOML3 in pathologies associated with neuropathic 361 

pain. In summary, we provide mechanistic validation of a novel pharmacological strategy to 362 

modulate sensory mechanotransduction to treat sensory disorders including pain.  363 

Accession Codes 364 

N/A 365 

Data Availability Statement 366 

All materials and datasets are available on request 367 

Acknowledgements 368 

We thank Kathleen Barda, Maria Braunschweig, and Heike Thraenhardt for technical 369 

assistance and Gregor Lichtner for providing the custom written algorithm for dSTORM drift 370 

correction. We also thank Bettina Purfürst for electron microscopy experiments. This study 371 

was funded by a DFG collaborative research grant SFB958 (projects A09 to K.P and G.R.L., 372 

A01 to V.H. and Z02 to J.S.). Additional support was provided by a senior ERC grant (Grant 373 

number 294678 to G.R.L) and the Neurocure excellence cluster (to V.H., G.R.L., and 374 

J.F.A.P.). K.P was supported by a Cecile-Vogt Fellowship (MDC). S.P. was supported by 375 

Marie Curie fellowship from the European Union (Grant number 253663 Touch in situ). C.P. 376 

received a Ph.D fellowship from the University of Cagliari. J.F.A.P. was funded by a 377 

European Research council (ERC) starting grant (ERC-2010-StG-260590), the DFG (FOR 378 

1341, FOR 2143), the Berlin Institute of Health (BIH) and the European Union (FP7, 379 

3x3Dimaging 323945). RK was supported by an ERC Advanced Investigator grant (294293 - 380 

PAIN PLASTICITY). DH was funded by the Berlin Institute of Health (BIH). EStJ Smith, 381 

LE and MM were supported by an Alexander von Humboldt fellowship. We would like to 382 

thank H.Wende for providing help and advice for generating the Stoml3lacZ allele and S. 383 

Lechner for comments on the MS. 384 

Author Contributions 385 

KP designed and carried out the screen, and characterized small molecules with dSTORM 386 

and patch clamp electrophysiology. CW performed ex vivo skin electrophysiology and 387 



experiments in mice and behavioral experiments. SP screened OB-1 for effects on 388 

mechanosensitive currents in DRGs. CP performed behavioral and real time PCR 389 

experiments and performed histochemical analysis of the Stoml3lacz mice. CG determined 390 

IC50s using the pili method. DH performed touch perception assays with LE who established 391 

the methodology. KKB established the diabetic neuropathay model and performed behavioral 392 

experiments. AL performed and analyzed dSTORM experiments with LL, VB, KP, CP and 393 

JW generated and characterized the Stoml3lacz and StomlStrepII mice. LL and RF performed 394 

molecular cloning experiments. Est.JS performed ASIC experiments. MM performed 395 

additional electrophysiological experiments. JK analysed transmission electron microscopy 396 

data. ES synthesized molecules and managed compound libraries. MN performed statistical 397 

analyses of high throughput screening data and helped in design and execution of the screen. 398 

JPvK supervised screening experiments. JFAP established touch perception assays and 399 

supervised the acquisition and analysis of the data. VH and JS directed and supervised 400 

imaging experiments. KP, CW and GRL wrote the paper. KP, CW and GRL conceived and 401 

directed the project. 402 

Competing Financial Interests Statement 403 

G.R.L., K.P.,C.W., E.S., L.L. are named as inventors on a patent application related to data in 404 

this paper. 405 

References 406 

1. Bensmaia, S. J. Tactile intensity and population codes. Behav. Brain Res. 190, 165–407 

173 (2008). 408 

2. Poole, K., Herget, R., Lapatsina, L., Ngo, H.-D. & Lewin, G. R. Tuning Piezo ion 409 

channels to detect molecular-scale movements relevant for fine touch. Nat. Commun. 410 

5, 3520 (2014). 411 

3. Woo, S.-H. et al. Piezo2 is required for Merkel-cell mechanotransduction. Nature 412 

(2014). doi:10.1038/nature13251 413 

4. Ranade, S. S. et al. Piezo2 is the major transducer of mechanical forces for touch 414 

sensation in mice. Nature 516, 121–125 (2014). 415 

5. Moshourab, R. A., Wetzel, C., Martinez-Salgado, C. & Lewin, G. R. Stomatin-domain 416 

protein interactions with acid-sensing ion channels modulate nociceptor 417 

mechanosensitivity. J. Physiol. 591, 5555–5574 (2013). 418 

6. Wetzel, C. et al. A stomatin-domain protein essential for touch sensation in the mouse. 419 

Nature 445, 206–209 (2007). 420 



7. Costigan, M., Scholz, J. & Woolf, C. J. Neuropathic pain: a maladaptive response of 421 

the nervous system to damage. Annu. Rev. Neurosci. 32, 1–32 (2009). 422 

8. von Hehn, C. A., Baron, R. & Woolf, C. J. Deconstructing the Neuropathic Pain 423 

Phenotype to Reveal Neural Mechanisms. Neuron 73, 638–652 (2012). 424 

9. Tal, M. & Bennett, G. J. Extra-territorial pain in rats with a peripheral 425 

mononeuropathy: mechano-hyperalgesia and mechano-allodynia in the territory of an 426 

uninjured nerve. Pain 57, 375–382 (1994). 427 

10. Brand, J. et al. A stomatin dimer modulates the activity of acid-sensing ion channels. 428 

EMBO J. 31, 3635–3646 (2012). 429 

11. Poole, K. et al. Tuning Piezo ion channels to detect molecular-scale movements 430 

relevant for fine touch. Nat. Commun. 5, 3520 (2014). 431 

12. Chesler, A. T. et al. The Role of PIEZO2 in Human Mechanosensation. N. Engl. J. 432 

Med. 375, 1355–1364 (2016). 433 

13. Mahmud, A. A. et al. Loss of the proprioception and touch sensation channel PIEZO2 434 

in siblings with a progressive form of contractures. Clin. Genet. (2016). 435 

doi:10.1111/cge.12850 436 

14. Wang, Y. & Morrow, J. S. Identification and characterization of human SLP-2, a novel 437 

homologue of stomatin (band 7.2b) present in erythrocytes and other tissues. J. Biol. 438 

Chem. 275, 8062–8071 (2000). 439 

15. Boute, N. et al. NPHS2, encoding the glomerular protein podocin, is mutated in 440 

autosomal recessive steroid-resistant nephrotic syndrome. Nat. Genet. 24, 349–354 441 

(2000). 442 

16. Mairhofer, M., Steiner, M., Salzer, U. & Prohaska, R. Stomatin-like protein-1 interacts 443 

with stomatin and is targeted to late endosomes. J. Biol. Chem. 284, 29218–29229 444 

(2009). 445 

17. Da Cruz, S. et al. SLP-2 interacts with prohibitins in the mitochondrial inner 446 

membrane and contributes to their stability. Biochim. Biophys. Acta 1783, 904–911 447 

(2008). 448 

18. Lapatsina, L., Brand, J., Poole, K., Daumke, O. & Lewin, G. R. Stomatin-domain 449 

proteins. Eur. J. Cell Biol. 91, 240–245 (2012). 450 

19. Hu, C.-D., Chinenov, Y. & Kerppola, T. K. Visualization of interactions among bZIP 451 

and Rel family proteins in living cells using bimolecular fluorescence 452 

complementation. Mol. Cell 9, 789–798 (2002). 453 

20. Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional 454 



fluorescent probes. Angew. Chem. Int. Ed. Engl. 47, 6172–6176 (2008). 455 

21. Lampe, A., Haucke, V., Sigrist, S. J., Heilemann, M. & Schmoranzer, J. Multi-colour 456 

direct STORM with red emitting carbocyanines. Biol. Cell 104, 229–237 (2012). 457 

22. Wolter, S. et al. rapidSTORM: accurate, fast open-source software for localization 458 

microscopy. Nat. Methods 9, 1040–1041 (2012). 459 

23. Hu, J. & Lewin, G. R. Mechanosensitive currents in the neurites of cultured mouse 460 

sensory neurones. J. Physiol. 577, 815–828 (2006). 461 

24. McCarter, G. C., Reichling, D. B. & Levine, J. D. Mechanical transduction by rat 462 

dorsal root ganglion neurons in vitro. Neurosci. Lett. 273, 179–182 (1999). 463 

25. Price, M. P., Thompson, R. J., Eshcol, J. O., Wemmie, J. A. & Benson, C. J. Stomatin 464 

modulates gating of acid-sensing ion channels. J. Biol. Chem. 279, 53886–53891 465 

(2004). 466 

26. Kozlenkov, A., Lapatsina, L., Lewin, G. R. & Smith, E. S. J. Subunit-specific 467 

inhibition of acid sensing ion channels by stomatin-like protein 1. J. Physiol. 592, 468 

557–569 (2014). 469 

27. Milenkovic, N., Wetzel, C., Moshourab, R. & Lewin, G. R. Speed and temperature 470 

dependences of mechanotransduction in afferent fibers recorded from the mouse 471 

saphenous nerve. J. Neurophysiol. 100, 2771–2783 (2008). 472 

28. Lewin, G. R. & Moshourab, R. Mechanosensation and pain. J. Neurobiol. 61, 30–44 473 

(2004). 474 

29. Beggs, S., Trang, T. & Salter, M. W. P2X4R+ microglia drive neuropathic pain. Nat. 475 

Neurosci. 15, 1068–1073 (2012). 476 

30. Chaplan, S. R., Bach, F. W., Pogrel, J. W., Chung, J. M. & Yaksh, T. L. Quantitative 477 

assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 53, 55–63 (1994). 478 

31. Baron, R. Neuropathic pain: a clinical perspective. Handb. Exp. Pharmacol. 3–30 479 

(2009). doi:10.1007/978-3-540-79090-7_1 480 

32. Sorge, R. E. et al. Different immune cells mediate mechanical pain hypersensitivity in 481 

male and female mice. Nat. Neurosci. 18, 1081–1083 (2015). 482 

33. Dworkin, R. H. et al. Recommendations for the pharmacological management of 483 

neuropathic pain: an overview and literature update. Mayo Clin. Proc. 85, S3-14 484 

(2010). 485 

34. Basbaum, A. I., Gautron, M., Jazat, F., Mayes, M. & Guilbaud, G. The spectrum of 486 

fiber loss in a model of neuropathic pain in the rat: an electron microscopic study. Pain 487 

47, 359–67 (1991). 488 



35. Decosterd, I. & Woolf, C. J. Spared nerve injury: an animal model of persistent 489 

peripheral neuropathic pain. Pain 87, 149–158 (2000). 490 

36. Shields, S. D., Eckert, W. A. & Basbaum, A. I. Spared nerve injury model of 491 

neuropathic pain in the mouse: a behavioral and anatomic analysis. J. Pain Off. J. Am. 492 

Pain Soc. 4, 465–470 (2003). 493 

37. Lewin, G. R., Lechner, S. G. & Smith, E. S. J. Nerve growth factor and nociception: 494 

from experimental embryology to new analgesic therapy. Handb. Exp. Pharmacol. 495 

220, 251–282 (2014). 496 

38. Lewin, G. R. et al. Nerve growth factor-induced hyperalgesia in the neonatal and adult 497 

rat. J. Neurosci. 13, 2136–48 (1993). 498 

39. Lewin, G. R., Rueff, A. & Mendell, L. M. Peripheral and central mechanisms of NGF-499 

induced hyperalgesia. Eur. J. Neurosci. 6, 1903–12 (1994). 500 

40. Korndörfer, I. P. & Skerra, A. Improved affinity of engineered streptavidin for the 501 

Strep-tag II peptide is due to a fixed open conformation of the lid-like loop at the 502 

binding site. Protein Sci. 11, 883–93 (2002). 503 

41. Lapatsina, L. et al. Regulation of ASIC channels by a stomatin/STOML3 complex 504 

located in a mobile vesicle pool in sensory neurons. Open Biol. 2, 120096 (2012). 505 

42. van Hecke, O., Austin, S. K., Khan, R. A., Smith, B. H. & Torrance, N. Neuropathic 506 

pain in the general population: a systematic review of epidemiological studies. Pain 507 

155, 654–662 (2014). 508 

43. Bierhaus, A. et al. Methylglyoxal modification of Nav1.8 facilitates nociceptive 509 

neuron firing and causes hyperalgesia in diabetic neuropathy. Nat. Med. 18, 926–933 510 

(2012). 511 

44. Abraira, V. E. & Ginty, D. D. The sensory neurons of touch. Neuron 79, 618–639 512 

(2013). 513 

45. Lechner, S. G. & Lewin, G. R. Hairy sensation. Physiology (Bethesda). 28, 142–150 514 

(2013). 515 

46. Syeda, R. et al. Chemical activation of the mechanotransduction channel Piezo1. Elife 516 

4, (2015). 517 

47. Li, J. et al. Piezo1 integration of vascular architecture with physiological force. Nature 518 

(2014). doi:10.1038/nature13701 519 

48. Ranade, S. S. et al. Piezo1, a mechanically activated ion channel, is required for 520 

vascular development in mice. Proc. Natl. Acad. Sci. U. S. A. 111, 10347–10352 521 

(2014). 522 



49. Woo, S.-H. et al. Piezo2 is the principal mechanotransduction channel for 523 

proprioception. Nat. Neurosci. 18, 1756–62 (2015). 524 

50. Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale 525 

single-cell RNA sequencing. Nat. Neurosci. 18, 145–153 (2015). 526 

 527 

  528 



Figure Legends 529 

Figure 1 Screening for small molecules that modulate STOML3 oligomerization. a, 530 

Schematic representation of BiFC analysis of protein-protein interactions used for small 531 

molecule screen. b, Signal development observed when STOML3-VC was used as prey and 532 

VN-tagged STOML3 variants that do not properly oligomerize were used as bait. c, The 533 

normalized slope of BiFC signal development was used as a measure of oligomerization.  ** 534 

p < 0.01 *** p < 0.001; unpaired t-test, two-tailed with p = 0.0046  (t=3.629 df=10)  535 

STOML3 vs. STOML3-V190P, p < 0.0001 (t=9.265 df=10) STOML3 vs. 536 

STOML3LR89,90VP,  p < 0.0001 (t=12.15 df=10) STOML3 vs. un-transfected cells; 537 

numbers indicate replicate TECAN experiments derived from 4-6 independent transfections; 538 

data are shown as individual slopes and mean ± s.e.m. d, Structures of hit compounds, the 539 

oligomerization blockers, OB-1 and OB-2. e,f,  Normalized slope of BiFC signal 540 

development in cells overexpressing Mus musculus or Homo sapiens STOML3 in the 541 

presence of OB-1 and OB-2 is shown. ** p < 0.01 *** p < 0.001; (i) unpaired t-test, two-542 

tailed with p=0.0002 (t=6.594 df=8) mmSTOML3 vs. mmSTOML3 + OB-1, p=0.0064 543 

(t=3.527 df=9) mmSTOML3 vs. mmSTOML3 + OB-2; numbers indicate replicate TECAN 544 

experiments derived from 4-6 independent transfections; data are displayed as individual 545 

slopes and mean ± s.e.m.; mean ± s.e.m. (e); (ii) Mann-Whitney U test, two tailed with p = 546 

0.0002 (Sum of  ranks 100 , 36  U 0) hsSTOML3 vs. hsSTOML3 + OB-1; numbers indicate 547 

replicate TECAN experiments derived from two independent transfections with 4 replicates 548 

each; data are shown as individual slopes and mean ± s.e.m. (f). g, Representative 549 

reconstructed dSTORM images of STOML3-FLAG overexpressed in N2a cells. h, 550 

Distribution of STOML3-FLAG domain size as detected by dSTORM imaging. ** p < 0.01 551 

*** p < 0.001; unpaired t-test, two-tailed, with p = 0.0023 (t=3.496 df=20) STOML3 vs. 552 

STOML3-V190P,  p < 0.0001 (t=6.533 df=26) STOML3 vs. STOML3 + OB-1,  p = 0.0006 553 

(t=3.994 df=23) STOML3 vs. STOML3 + OB-; numbers indicate N2a cells derived from at 554 

least 3 transfections. Each data point represents a single cell, for each cell the FHWM of 100 555 

randomly chosen domains was measured. 556 

 557 

Figure 2 Quantitative analysis of the effect of hit compounds on mechanotransduction. 558 

a, Schematic of pillar array analysis of mechanotransduction in N2a cells. b, Stimulus-559 

response curves for N2a treated with either OB-1 or OB-2; both compounds significantly 560 

inhibit mechanically-gated currents in N2a cells.  ** p < 0.01 *** p < 0.001; (i) Two-way 561 

ANOVA (stimulus response relationship) with p=0.0044 F (1, 131) = 8.390 Vehicle vs. OB-562 



1, p = 0.0388 F (1, 108) = 4.375 Vehicle vs. OB-2, numbers indicate stimulus response 563 

curves for N2a cells from  > 5 independent experiments, data are displayed as mean of 564 

individual bins ± s.e.m.;  (ii) Mann- Whitney U-test, two-tailed, Bin 250-500 with p=0.0146 565 

(U=27.00) Vehicle vs. OB1, p=0.0363 (U=23.50) Vehicle vs. OB2; numbers indicate cells 566 

stimulated in this range, data are displayed as mean current amplitude of individual bins ± 567 

s.e.m.. c, Hill plot of the concentration dependence of the OB-1 effect on the Piezo1 current 568 

in N2a cells.  ** p < 0.05; Mann-Whitney U test with p = 0.9266 Vehicle vs. 0.002µM OB-1, 569 

p = 0.1236 Vehicle vs. 0.02µM OB-1, p = 0.1112 Vehicle vs. 2µM OB-1, p = 0.0105 Vehicle 570 

vs. 20µM OB-1; numbers indicate N2a cells recorded in 2 (Vehicle), 4 (0.002µM), 3 571 

(0.2µM),  3 (2µM),  3 (20µM OB1)  independent experiments, data are displayed as mean 572 

current amplitude of individual bins ± s.e.m.. d, Schematic of pillar array analysis of 573 

mechanotransduction in acutely prepared DRG neurons. e, Stimulus-response curves for 574 

mechanoreceptors treated with either OB-1 or OB-2; both compounds significantly inhibit 575 

mechanically-gated currents activated by pillar deflections less than 50 nm, OB-1 576 

significantly inhibits currents gated by deflections up to 250 nm.  * p < 0.05 ** p < 0.01 *** 577 

p < 0.001; (i) Two-way ANOVA with p = 0.0007 (F (1, 80) = 12.56) Vehicle vs. OB-1, p = 578 

0.0017 (F (1, 78) = 10.59) Vehicle vs. OB-2; numbers indicate recorded stimulus-responses 579 

curves of DRG mechanoreceptors from at least 3 DRG preps; (ii) unpaired t-test, two-tailed,  580 

Bin 0-10 with p = 0.0462 (t=2.246 df=11) Vehicle vs. OB1, p = 0.0291 (t=2.477 df=12) 581 

Vehicle vs. OB2; (iii) Mann-Whitney U test, two tailed, Bin 10-50 with p = 0.0053 Vehicle 582 

vs. OB-1, p = 0.0068 Vehicle vs. OB-2, Bin 50-100 with p = 0.0224 Vehicle vs. OB-1, Bin 583 

100-500 with p = 0.0239 Vehicle vs. OB-1; numbers indicate currents measured from DRG 584 

mechanoreceptors, data from at least 3 DRG cultures derived from 5-7 weeks old mice; data 585 

are displayed as current amplitude, each bin displayed as mean of cell averages ± s.e.m..  f, 586 

Stimulus-response curves for nociceptors treated with either OB-1 significantly inhibit 587 

mechanically-gated currents in these cells.   * p < 0.05, (i) Two-way ANOVA with p = 588 

0.0263 (F (1, 80) = 12.56) (F (1, 78) = 10.59) Vehicle vs. OB-1, ns  (F (1, 78) = 10.59) 589 

Vehicle vs. OB-2, numbers indicate stimulus-response curves in DRG nociceptors derived 590 

from at least 3 DRG preparations derived from 5-7  weeks old mice ; data are displayed as 591 

current amplitude, each bin displayed as mean of cell averages ± s.e.m; (ii) Mann-Whitney U 592 

test with p =0.0388 (U=10.00, Bin 100-250) Vehicle vs. OB-1, p = 0.0087 (U=2.000, Bin 593 

250-500) Vehicle vs. OB-2; numbers indicate currents measured in DRG nociceptors, at least 594 

3 DRG preparations derived from 5-7  weeks old mice; data are displayed as current 595 

amplitude, each bin displayed as mean of cell averages ± s.e.m.. g-i, In the presence of OB-1 596 



there was no detectable difference in action potentials generated by current injection in either 597 

(h) mechanoreceptors or (i) nociceptors, statistical tests applied: (i) Mann-Whitney U test 598 

(Mechanoreceptors) with p = 0.215 (U=19); (ii) Student’s t-test  (Nociceptors), two-tailed 599 

with p = 0.4743 (F=2.682, DFn=11, Dfd=12); numbers indicate cultivated neurons recorded 600 

from 3 mice in 3 independent experiments; data are displayed as current amplitudes and mean 601 

of individual bins ± s.e.m.. 602 

 603 

Figure 3 Mechanoreceptors can be silenced with local OB-1 treatment.  604 

a, Inset: Electrical search protocol schema. A micro electrode (~1MΩ) was used to deliver 605 

electrical stimuli at two distant points of the saphenous nerve trunk in order to trace 606 

electrically identified units to their receptive fields. Proportions of mechanoINsensitive fibers 607 

are shown. Three hours after local OB-1 treatment (250 -500 pmol OB-1 per paw) an increase 608 

in mechanically INsensitive Aβ-fibers was observed; note that mechanosensitivity had 609 

recovered 24h post-injection.  ** p < 0.01 *** p < 0.001; Fisher's exact test with p < 0.0001 610 

Aβ-fibers Vehicle vs. OB-1(male & female mice), p < 0.0001 (Aβ-fibers Vehicle vs. OB-1 611 

(male), p = 0.0033 Aβ-fibers Vehicle vs. OB-1(female), p = 1.0 ( Aβ-fibers OB-1(male)  vs.  612 

OB-1 (female), p = 0.0028 Aβ-fibers OB-1 vs.  OB-1 wash-out, p = 0.2465 Aδ-fibers Vehicle 613 

vs. OB-1, p = 1.0 C-fibers Vehicle vs. OB-1; numbers indicate single sensory fiber recordings 614 

derived from 10-20 independent experiments using adult mice (Fig 3a-e together), data are 615 

displayed as percentage of individual fibers. b, Stimulus response function of C-MH fibers is 616 

shown using a series of ascending displacements (32 – 1024 µm). C-MH fibers were 617 

significantly less responsive in OB-1 treated mice compared to vehicle treated controls.  * p < 618 

0.05; Two-way ANOVA with p = 0.0412 (F=4.208, DFn=1, Dfd=257) Vehicle vs. OB-1; 619 

numbers indicate fibers recorded in 10-20 independent experiments; data are displayed as 620 

mean number of action potentials ± s.e.m.. c, Mean force thresholds for C-MH fiber 621 

discharge are displayed showing a significant elevation of mechanical thresholds. * p < 0.05; 622 

Mann-Whitney U test with p=0.0233 (U = 89); numbers indicate single sensory fiber 623 

recordings derived from 10-20 independent experiments using adult mice (Fig 3a-e together); 624 

data are displayed as individual thresholds and mean threshold ± s.e.m.. d, For C-M fibers 625 

there was no significant difference between vehicle and OB-1 treated stimulus response 626 

functions. Statistical test applied: Two-way ANOVA with p = 0.3563 (F=0,8579,DFn=1, 627 

Dfd=115); numbers indicate single sensory fiber recordings derived from 10-20 independent 628 

experiments using adult mice (Fig 3a-e together); data are displayed as mean number of 629 

action potentials ± s.e.m.. e, Mean  force thresholds for C-M fiber were also not different 630 



between vehicle and OB-1 treatments. Statistical test applied: unpaired t-test, two tailed with 631 

p = 0.7860 t=0,2756 df=18;numbers indicate single sensory fiber recordings derived from 10-632 

20 independent experiments using adult mice (Fig 3a-e together); data are displayed as 633 

individual thresholds and mean threshold ± s.e.m.).  634 

 635 

Figure 4 OB-1 reduces the touch perception in mice 636 

A tactile perception task for head-restrained mice. a, Mice were trained to report a single 637 

tactile pulse stimulus (inset shows stimulus voltage command pulse for all 8 amplitudes). 638 

Trial structure: mice were trained to (1) hold the rest sensor and wait for a stimulus; (2) on 639 

detection of the stimulus reach and press the target sensor within 500 ms from stimulus onset; 640 

(3) obtain water reward by licking providing it was a successful trial. b, Psychometric curves 641 

to different amplitude tactile stimuli are affected by injection of OB-1 into forepaw. Curves 642 

were constructed with a sigmoid fitting of the mean hit rates to 7 different amplitudes of 643 

tactile stimuli and a no stimulus trial (false alarm). Three conditions are displayed, injection 644 

of the vehicle (black), injection of OB-1 (magenta) and a recovery session with no prior 645 

injection (grey). c, OB-1 application to forepaw attenuates perception of near threshold tactile 646 

stimuli. Grouped hit rates to 3 threshold amplitude values (125, 175 and 275 µm) from 5 647 

mice were significantly reduced after OB-1 injection as compared to hit rates after vehicle 648 

injection or on recovery session without prior injection. Statistical tests were made on hit 649 

rates after subtraction of the corresponding false alarm rates. * p < 0.05; Wilcoxon Signed 650 

Rank Test with p = 0.026 Vehicle vs.. OB-1,  p = 0.0043 OB-1 vs.. OB-1 Wash-out, p = 0.12 651 

Vehicle vs.. OB-1 Wash-out; numbers indicate mice treated, data are displayed as average of 652 

individual hit rates of each mouse, grouped for 3 amplitudes ± s.e.m.. 653 

 654 

Figure 5 Tactile-evoked pain can be treated with OB-1. 655 

a, Development of tactile-evoked pain after traumatic nerve injury is shown. Paw withdrawal 656 

thresholds (PWT) to varying forces of von Frey filaments before and after unilateral CCI 657 

were measured. Note that after nerve injury Stoml3-/- mice develop significantly less tactile-658 

evoked pain compared to wild type animals. *** p < 0.001 ** p < 0.01; Two-way ANOVA 659 

with p < 0.0001 (F=107,65, DFn=1, Dfd=159) WT vs. Stoml3-/- and  Bonferroni’s multiple 660 

comparison with p >  0,9999, t = 1,488  df=159  (d0),  p = 0,3728, t = 2,056 df = 159  (d2),  p 661 

= 0.0027, t = 3,701 df = 159  (d4),  p = 0.0006,  t = 4,104 df = 159   (d6), p = 0.006, t = 4,096 662 

df = 159   (d8), p = 0.003,  t = 4,273 df = 159   (d10), p < 0.0001,  t =5,255df = 159   (d12), p 663 

= 0.0303,  t = 2,977 df = 159   (d14), p = 0.0048,  t = 3,535 df = 159   (d21); numbers indicate 664 



numbers of adult mice examined from two cohorts tested independently; data are displayed as 665 

mean of individual median PWTs ± s.e.m.. b, Paw withdrawal latencies (PWLs) to a standard 666 

radiant heat source applied to the ipsilateral hind paw of wild type and Stoml3-/- mice before 667 

and after CCI were not different between the genotypes. ** p < 0.01 * p < 0.05; Mann-668 

Whitney U test with p = 0.0065 WT (U = 1.500) naive  vs. WT CCI, p = 0.0325 (U = 4.500 ) 669 

Stoml3-/- naive  vs. Stoml3-/- CCI, p = 0.2532 (U= 10.50) WT CCI vs. Stoml3-/- CCI ; numbers 670 

indicate mice treated (one cohort); data are displayed as mean PWL ± s.e.m.). c, Treatment of 671 

naïve mice with OB-1 does not alter PWTs, paws of mice treated, (12= ipsi and contra; 672 

6=ipsi, 6=contra) one cohort, ns Mann-Whitney U test with p = 0.2042 (U = 22) Naïve vs 673 

OB-1 treated, p = 0.4545 (U = 14) OB-1 treated vs. Vehicle treated; numbers indicate adult 674 

mice treated; data are displayed as mean of individual median PWTs. d-e, PWT measured 675 

before and after nerve injury shows clear hypersensitivity that is not reversed by injection of 676 

vehicle, note that local ipsilateral treatment of the neuropathic paw with OB-1 effectively 677 

normalizes PWT, but treatment of the contralateral paw does not (e). ** p < 0.01 * p < 0.05; 678 

(i) paired t-test, two tailed with p = 0.0028 (t=3,570 df=15) CCI male & female vs. CCI + 679 

OB-1 male & female), p = 0.0066 (t=3,811 df=7) CCI male vs. CCI + OB-1 male, p = 0.0193 680 

(t=3,022 df=7) CCI female vs. CCI + OB-1 female),   (ii) Mann-Whitney U test  with p= 0.25 681 

(U = 7) CCI ipsi vs. OB-1contralateral injected ipsilateral measured; numbers indicate adult 682 

mice examined from three cohorts tested independently; data are displayed as mean of 683 

individual median PWTs; ± s.e.m.. f, Note that alleviation of hypersensitivity with OB-1 684 

treatment is indistinguishable from gabapentin treatment. ** p < 0.01; Wilcoxon matched-685 

pairs signed rank test with p = 0.0013 (t=6,518 df=5 ) CCI vs. CCI + Gabapentin; numbers 686 

indicate adult mice treated (one cohort tested), data are displayed as mean of individual 687 

median PWTs; error bars indicate s.e.m.. g, Dose-response relationship of OB-1 is shown, 688 

ED50 = 4.42 µM or approximately 20 pmol. *** p < 0.001 ** p < 0.01; Mann-Whitney U test 689 

with p = 0.7265 Vehicle vs. 0.5µM OB-1, p = 0.0749 Vehicle vs. 5µM OB-1, p = 0.0002 690 

Vehicle vs. 50µM OB-1, p = 0.0044  Vehicle vs. 100µM OB-1; numbers indicate drug 691 

treatments, adult mice came from 9 cohorts; data are displayed as mean of individual median 692 

PWTs; error bars indicate s.e.m.. h, Measurement of PWTs over time; the maximal analgesic 693 

efficacy developed between 3h and 9h after local OB-1 injection; numbers indicate mice 694 

treated (one cohort tested); data are displayed as mean of individual median PWTs. i, No 695 

significant change in PWT was measured in Stoml3-/- mice with CCI  after local 696 

administration of OB-1, paired t-test with  p =0.125 ( Sum of signed ranks = 13.00  Number 697 

of pairs = 6) CCI, Stoml3-/-  vs. CCI, Stoml3-/- + OB-1; numbers indicate drug treatments (one 698 



cohort tested); data are displayed as mean of individual median PWTs; error bars indicate 699 

s.e.m.. j, Stoml3 copy number derived from lumbar DRG L4-6  determined using real-time 700 

PCR showing an ipsilateral up-regulation of Stoml3 mRNA. Note that the last two bars 701 

represent data from Stoml3-/- mice. ** p < 0.01, * p < 0.05; Mann-Whitney U test with 702 

p=0.0079 (U = 0) CCI ipsi vs. contra, p=0.0357 (U = 0) naive ipsi vs. CCI ipsi, p=0.7000 (U 703 

= 4)  naive ipsi vs. contra numbers indicate RNA preparations with L4-6 of two adult mice 704 

pooled for one RNA preparation; data represent the mean copy number ± s.e.m.). 705 

 706 

Figure 6 Regulation of STOML3 in painful neuropathy   707 

a, Cytochemistry of lumbar DRGs from Stoml3+/lacZ mice that had received a nerve injury 708 

(CCI). b, Note that the number of lacZ-positive neurons increased after a unilateral CCI 709 

predominantly in large cells.***p < 0.001; Fisher's exact test with p < 0.0001; numbers 710 

indicate cells counted analyzing 23 images obtained from 10 adult Stoml3lacZ/lacZ mice or 17 711 

images obtained from adult Stoml3+/lacZ mice. c, schematic of the modified locus of StrepII 712 

knockin mice. d, Western blots of protein extracts taken from the sciatic nerve of 2 adult 713 

Stoml3StrepII/StrepII knockin mice per protein preparation subjected to unilateral CCI. Extracts 714 

were made from two mice per time point note that a specific StrepII-STOML3 band was 715 

detected ipsiliateral and contralateral to the injury at all time points (bands are not detected in 716 

protein extracts from sciatic nerves of  2 adult Stoml3-/- mice per protein preparation). At day 717 

2 (d2), day 6 (d6) and to a lesser extent day 13 (d13) post-injury there was clearly much more 718 

protein found on the injured side compared to the uninjured sciatic nerve. The same protein 719 

extracts were probed with antibodies against PGP9.5 a neuronal marker which decreased 720 

dramatically on the injured side consistent with the known loss and atrophy of axons in the 721 

CCI model.  722 

 723 

Figure 7 Inhibition of STOML3 alleviates painful diabetic neuropathy 724 

a, Diabetic peripheral neuropathy was induced using streptozotocin (STZ). After 725 

development of peripheral neuropathy, diabetic mice received a single injection of OB-1 or 726 

vehicle respectively into the plantar surface of the hind paw. a, Three hours after injection, 727 

OB-1 treated mice showed attenuated mechanical sensitivity displayed as percentage of 728 

withdrawal to increasing von Frey filaments. *** p < 0.001; Two-way ANOVA with p > 729 

0.0001 (F (1, 132) = 28,07)  OB-1 vs. STZ and Bonferroni's multiple comparison with p > 730 

0.9999 (t = 0,7867 df = 132) (0.07g), p > 0.9999 (t = 1.377 df= 132)  (0.16g), p = 0.0033 (t = 731 

3.539 df= 132)  (0.4g), p = 0.0123 (t = 3.146 df= 132)  (0.6g), p = 0.0404 (t = 2.753 df= 132)  732 



(1g), p > 0,9999, t = 1.377 df= 132  (1.4g) ; numbers indicate adult mice treated; data are 733 

displayed as mean of individual PWTs; error bars indicate s.e.m.)  b, mechanical thresholds 734 

required to elicit 60% withdrawal frequency.** p < 0.01, *** p<0.001;  (i) Wilcoxon Signed 735 

Rank Test with p = 0.0005 (Sum of signed ranks  -78,00 Number of pairs 12, Naive vs. 736 

STZ, (ii) paired t-test, two-tailed with  p = 0.0013 (t=4,287 df=11) STZ vs. STZ + OB1, p = 737 

0.0004 (t=4,939 df=11) STZ + OB1 vs. OB-1 Wash-out; numbers indicate mice treated, two 738 

cohorts were  tested independently; data are displayed as mean of individual PWTs; error 739 

bars indicate s.e.m.. c,d, Diabetic mice in the vehicle treated group showed no reversal of 740 

mechanical hypersensitivity. ** p < 0.01 (i) ordinary Two-way ANOVA with p = 0.0765  (F 741 

(1, 144) = 3,184) STZ vs. STZ+ Vehicle; (ii) Wilcoxon Signed Rank Test with p= 0.0765,  742 

Naive vs. STZ; (ii) paired t-test, two-tailed with p= 0.3125 (t=1,054 df=1) STZ vs. STZ + 743 

Vehicle, p=0.0859  (t=1,871 df=12) STZ + Vehicle vs. Vehicle Wash-out; numbers indicate 744 

mice treated from two cohorts tested independently; data are displayed as mean of individual 745 

PWTs; error bars indicate s.e.m. 746 

  747 



Online Methods 748 
 749 
The experiments in this study were carried out on adult inbred male or female mice (adult 750 
C57Bl/6n obtained from Charles River, Sulzfeld, Germany) or adult mice generated and 751 
breed in the laboratory (Stoml3-/-, Stoml3StrepII or Stoml3lacZ). All experiments were performed 752 
in compliance with German and European laws for the use of animals in research and with 753 
appropriate permits from the Berlin authorities. Animals were kept under controlled 754 
temperature and a 12–h light, 12–h dark cycle with lights on at 06:00 A.M. Behavioral tests 755 
were conducted during the light phase. and the experimenter was blinded to treatment and 756 
genotype unless otherwise stated. 757 
 758 
Statistics 759 
All data were tested for normal distribution. Appropriate statistical tests applied for data 760 
analysis are referred to in the figure legend. Multiple comparisons were performed by 761 
repeated measures two-way ANOVA followed by Bonferroni post hoc test. Significance 762 
levels of p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***) were used. Statistical analyses and 763 
exponential fits were made using the GraphPad Prism or Igor Pro 6.11. software. No 764 
statistical methods were used to pre-determine sample sizes but our sample sizes are similar 765 
to those reported in previous publications1–11. Experimenters were always blinded to 766 
treatment, or genotype unless otherwise stated. No special randomization procedures were 767 
used for assigning groups. 768 
 769 
Molecular biology 770 

Expression Constructs 771 
Constructs for BiFC analysis were created by inserting the gene of interest, in frame, into the 772 
multiple cloning site of pBiFC-VC155 or pBiFC-VN173. Point mutations were introduced 773 
using PCR-based site-directed mutagenesis.  774 
RT-PCR analysis  775 
Lumbar L3-L6 dorsal root ganglia (DRG) were dissected from CCI and control mice, pooled 776 
and total RNA extracted with the TRIzol method (Invitrogen) as per manufacturer 777 
recommendations and treated with the TURBO DNA-free™ Kit to avoid DNA 778 
contamination. RNA was quantified using NanoDrop 2000 UV-Vis spectrophotometer 779 
(Thermo Scientific) and reverse-transcribed using SuperScript® III Reverse Transcriptase 780 
(Invitrogen). TaqMan Quantitative RT-PCR was used to detect the expression of STOML3 781 
mRNA with 5´-GGAAGCCAGAGCCAAGGT-3´ and 5´-TGCAGGTACCGAAGTTGGA-782 
3´primers in combination with the TaqMan probe #53 from Roche Universal Probe Library. 783 
Each sample was performed in triplicate in an ABI Prism 7700 Sequence Detection System 784 
(Thermo Scientific).  785 
 786 
Cell culture 787 

HEK-293 cells (passage numbers 4-20) were cultured in DMEM plus 10% fetal calf serum 788 
(FCS). Neuro2A (N2a) cells were cultured in DMEM/Opti-MEM media plus 10% FCS. Cell 789 



lines were originally sourced from the ATCC and regularly checked for mycoplasma 790 
contamination. Sensory DRG neurons were isolated from 4 week old Mus musculus 791 
(C57Bl/6). Approximately 40 ganglia were collected from each mouse and individual cells 792 
were isolated by treating ganglia with 1 µg/ml collagenase IV for 30 min, followed by 1 ml 793 
of 0.05% trypsin, in PBS, for 5-20 min at 37°C. Enzyme-treated ganglia, in DMEM/F-12 794 
media containing 10% Horse Serum (HS), were disrupted by gently passaging through a 20G 795 
needle; cells were then collected by centrifugation (1000 rpm, 3 min), washed and finally re-796 
suspended in DMEM/F-12, 10% HS media (at no point were neurotrophins added to the 797 
culture). Experiments with isolated sensory neurons were conducted within 24-36 hours of 798 
isolation. 799 
 800 

High through-put screen 801 

HEK-293 cells were cultured to approximately 70% confluence; cells were co-transfected 802 
with plasmids encoding STOML3-VC and STOML3-VN using Fugene-HD, as per 803 
manufacturer’s instructions. The transfection reaction proceeded for 8 h before cells were 804 
recovered and re-suspended in DMEM media containing 25 mM HEPES and lacking phenol 805 
red. Cells were plated on PLL-coated 384 well plates using an automated dispenser (EL406 806 
Microplate Washer Dispenser). Plates already contained compounds from the ChemBioNet 807 
library (www.chembionet.info) a library containing small molecules with drug like 808 
properties12. Development of the YFP fluorescence signal was monitored overnight (15 h), 809 
with readings taken every 3 h (ex: 515 ± 8 nm, em: 535 ± 8 nm). Overnight monitoring of 810 
signal development was performed with a Freedom Evo workstation and a SafireII plate 811 
reader for fluorescence measurement (Tecan Group Ltd, Männedorf, Switzerland), and an 812 
integrated STX44-ICSA automated plate incubator (Liconic AG, Mauren, Liechtenstein). 813 
Experiments were repeated with 20 plates each day until the entire compound library had 814 
been screened and data was normalized to in-plate controls. 815 

Compounds of interest were selected from the slope of YFP-signal vs time. Each well was 816 
compared to the average slope of in-plate positive controls (normalized percent activity), and 817 
compared to the mean and standard deviation of all samples on a plate (without the controls), 818 
giving a Z score as a measure of statistical significance9. One hundred and fifteen (115) 819 
inhibitors that significantly decreased the slope with a Z score < -3 were selected for further 820 
analysis. After re-screening in triplicate just 21 of the initially identified hit molecules were 821 
confirmed. Compounds that were themselves fluorescent or those that had significant effects 822 
on cell viability were discarded.  823 
 824 
dSTORM imaging 825 

N2a cells were cultured on EHS-Laminin coated precision coverglass, thickness 0.17mm, and 826 
transfected with a STOML3-FLAG plasmid. After overnight incubation, cells were treated 827 
for 3 hours with 20 µM compound, or DMSO as a control. Cells were fixed  (15 min, 4% 828 
PFA), permeabilized  (0.05% TritonX 100, 5 min) and blocked (phosphate buffered saline 829 
(PBS) containing 10% fetal goat serum (FGS), 37°C, 1 hr). Cells were labeled with mouse 830 



anti-FLAG antibody (M2 clone Sigma #F1084, 1:100 in PBS containing 10% FGS). The 831 
secondary antibody was an Alexa647-conjugated, goat anti-mouse antibody (1:100 in PBS 832 
plus 10% FGS, 1 h, 37°C). After staining, the samples were fixed again. Prior to dSTORM 833 
imaging, coverslips were mounted in dSTORM buffer PBS, pH 7.4, containing an oxygen 834 
scavenger (0.5 mg/ml glucose oxidase), 40 mg/ml catalase, 10% (w/v) glucose and 100 mM 835 
MEA 13.  836 
The custom-built dSTORM system, based on a Nikon Ti microscope, was described in detail 837 
previously 14. Before acquisition, we illuminated the Alexa647-labeled sample with 643 nm 838 
to switch fluorophores into the OFF state. After molecules started blinking, we acquired a 839 
sequence of frames (typically 10,000–20,000) using a 100x 1.49 NA objective, a 1.5 840 
magnification lens and non-binned EMCCD array. An exposure time of 30 ms was used to 841 
ensure good signal-to-noise and a high number of blinking single molecules/frame.  842 
In order to aid drift correction PLL-coated Tetra-speck fluorescent beads were allowed to 843 
adhere to the sample overnight. Localization: Single molecules were localized using open 844 
source software rapidSTORM 3.2 15. The source images are first smoothed via median 845 
operator followed by a fill-hole operation to reduce noise. In these ‘de-noised’ images, 846 
rapidSTORM performs a Gaussian fit (Levenberg–Marquardt parameter estimation) to each 847 
intensity spot, and fit quality and peak maxima were used as quality measures for 848 
localization. This fit yields the precise position of the single molecule with sub-pixel 849 
accuracy, the total intensity of the single molecule event and the frame number of the event. 850 
Sample drift was corrected using fiduciary beads in the sample as reference points (custom 851 
written algorithm, GREGOR). 852 
For analysis of STOML3 domain size, all reconstructed images were blinded and then from 853 
each imaged cell 100 individual dots were cropped (size: 20 x 20 pixels). A 2D-Gaussian fit 854 
was calculated using the Igor software (WaveMetrics, USA). The x-width and y-width for 855 
each dot were included in the data set as domains were not necessarily circular.  856 
 857 
Chemical Synthesis 858 
 859 
The molecules OB-1 and OB-2 were structurally compared using a Tanimoto coefficient. The 860 
structures were translated with a FCFP-4 protocol and the resulting fingerprints did not show 861 
any significant similarity. Detailed chemical information for OB-1 and OB-2 can be found 862 
with the following links: 863 
OB-1 http://www.chemspider.com/Chemical-Structure.948385.html 864 
OB-2 http://www.chemspider.com/Chemical-Structure.9820833.html  865 
For de novo synthesis 5.6 g of ethyl-3-oxo-3-phenylpropanoate (29.06 mmol) was solubilized 866 
in 50 ml toluene and 525 mg (1.45 mmol) of Cu(OTf)2 was added. Next, 1.57 g (14.5 mmol) 867 
of benzoquinone was solubilized in 20 ml of toluene and added dropwise to the reaction 868 
mixture followed by reflux for 3 h. The mixture was quenched with NH4Cl and extracted 869 
three times with ethyl acetate. The combined organic layers were washed with brine and 870 
dried with Na2SO4. The crude product was purified by chromatography on silica gel eluting 871 
with a gradient of Hex/EE (10:1) to give 2.24 g of ethyl-5-hydroxy-2-phenylbenzofuran-3-872 
carboxylate (Yield: 27 %) This product was an intermediate before final synthesis of OB-1. 873 
Next 0.5 g (1.77 mmol) of ethyl-5-hydroxy-2-phenylbenzofuran-3-carboxylate was 874 



solubilized in 20 ml DMF and 1.2 eq Cs2CO3 (0.7 g, 2.1 mmol), 0.1 eq CuI (33 mg, 0.17 875 
mmol) and 285 mg (1.77 mol) 5-chloro-1-mehtyl-4-nitro-1H-imidazole were added. The 876 
mixture was stirred for 3 h at room temperature. The organic solvent was removed under 877 
reduced pressure.  The crude product was purified by chromatography on silica gel eluting 878 
with a gradient of Hex/EE (3:2) to give 644 mg of ethyl-5-(1-methyl-4-nitro-1H-imidazol-5-879 
yloxy)-2-phenylbenzofuran-3-carboxylate (Yield: 89 %). 880 
 881 

Electrophysiology 882 

Whole-cell, patch-clamp recordings were conducted as previously described2,10, using patch 883 
pipettes with a tip resistance of 3-6 MΩ, filled with a solution of: 110 mM KCl, 10 mM 884 
NaCl, 1mM MgCl2, 1 mM EGTA and 10 mM HEPES, adjusted to pH 7.3 with KOH. For 885 
experiments on DRG neurons 10 mM QX-314 was added to the pipette to block voltage-886 
gated sodium channels10. Extracellular solutions contained 140 mM NaCl, 4 mM KCl, 2 mM 887 
CaCl2, 1 mM MgCl2, 4 mM glucose, 10 mM HEPES, adjusted to pH 7.4 with NaOH. A Zeiss 888 
200 inverted microscope and an EPC-10 amplifier in combination with Patchmaster software 889 
was used, data was analyzed using Fitmaster software (HEKA Electronik GmbH, Germany). 890 
Mechanical stimuli were applied using a polished glass probe driven by the MM3A 891 
micromanipulator (Kleindiek Nanotechnik, Germany). Mechanical stimuli were applied by 892 
either; indenting the cell soma or by culturing cells on elastomeric pillar arrays and applying 893 
the stimulus to the cell-substrate interface by deflecting an individual pilus. For a detailed 894 
description of experiments using pillar arrays10. Images were obtained of the pilus before and 895 
after deflection and images were analyzed off-line to determine the exact deflection for each 896 
data point. Images were obtained using a 40x LD objective and a CoolSNAP EZ CCD 897 
camera. The collection of stimulus-response data using pillar arrays generates data sets with 898 
variation in both x and y. In order to effectively compare groups for each cell studied we 899 
binned response data by stimulus size in the following bins: 0-10, 10-50, 50-100, 100-250, 900 
250-500, 500-1000 nm. For each cell, current amplitudes within each bin were averaged and 901 
then bins averaged between cells- we then tested for significance by testing whether the 902 
current amplitude for a given stimulation range (i.e. bin) differed between samples. To 903 
distinguish mechanoreceptors from nociceptors in the mixed population of acutely prepared 904 
DRG neurons, the shape of the generated action potential (AP) was used. For quantitative 905 
analysis of mechanosensitivity we measured responses in the most sensitive sub-population 906 
of mechanoreceptors with APs lacking a hump in the falling phase and a full width at half 907 
maximum (FWHM) of at least 0.7 ms, (average, ± s.e.m.: 0.9 ± 0.04 ms) 10. 908 
To test the effect of compounds on stomatin modulation of ASIC currents CHO cells were 909 
transfected with vectors encoding Stomatin and ASIC3, in a ratio of 4:1 using lipofectamine, 910 
as per manufacturer’s instructions. Cells were incubated with 20 µM OB-1 for 3 hours in 911 
extracellular buffer (see above), and OB-1 was maintained in the media during 912 
electrophysiological experiments. ASIC3 channels were gated by applying solutions of pH6 913 
and pH4, and both the transient and sustained peak current density was measured. 914 
 915 
Ex vivo skin nerve preparation 916 



The skin-nerve preparation was used essentially as previously described to record from single 917 
primary afferents7. For the electrical search protocol a microelectrode (1MΩ) was 918 
maneuvered to contact the epineurium of the nerve trunk and an electrical stimulation was 919 
delivered at 1 s intervals with square wave pulses of 50 – 500 ms duration. In most filaments 920 
3-5 single units were counted. The electrical nerve stimulation was done at 2 distant sites of 921 
the saphenous nerve to trace electrically identified units to their receptive fields. Mechanical 922 
sensitivity of single units was tested by mechanical stimulation with a glass rod. A computer-923 
controlled nanomotor (Kleindiek, Reutlingen, Germany) was used to apply controlled 924 
displacement stimuli of known amplitude and velocity. The probe was a stainless steel metal 925 
rod and the diameter of the flat circular contact area was 0.8 mm containing a force 926 
transducer (Kleindiek, Reutlingen, Germany). The signal driving the movement of the linear 927 
motor and raw electrophysiological data were collected with a Powerlab 4.0 system 928 
(ADInstruments) and spikes were discriminated off-line with the spike histogram extension 929 
of the software.   930 
 931 
Tactile perception task 932 
 933 
Male C57Bl6/J mice were anaesthetized and a lightweight metal headholder was implanted to 934 
the skull using glue (Loctite 401, Henkel) and dental cement (Paladur®, Heraeus). Mice were 935 
habituated to the head-restraint and the behavioral setup over 1-2 days. Mouse licking and 936 
forepaw behavior was monitored with three custom-made capacitance sensors: a licking 937 
sensor, a rest sensor and a target sensor that provided an online monitor of paw or tongue 938 
contact. The rest sensor was a ball (diameter: 6 mm) mounted on a glass rod of 30 mm length, 939 
glued to a piezoelectric bender (PICMA® Multilayer Piezo Bender Actuator, Physik 940 
Instrumente). The piezo generated a 30 ms cosine tactile pulse via a piezo amplifier system 941 
(Sigmann Elektronik). The stimulus amplitude was calibrated with a high-speed (300 Hz) 942 
camera (Dalsa Genie HM640). The target sensor (diameter: 6 mm) had a start position of 10 943 
mm horizontally in front of the rest sensor and was attached to a Fisso 3D articulated arm on 944 
a linear translation stage (ST9-100-2 eco-P, ITK Dr. Kassen GmbH, Germany). Mice were 945 
water restricted and given approximately 4 x 0.6 µl water rewards on condition of touching 946 
the target sensor within a defined latency from stimulus onset and licking the water dispenser. 947 
The target sensor moved to the start position at the start of a new trial and away from the 948 
mouse at the end of the trial. Inter-trial interval was randomized between 7 and 13 s. White 949 
noise was played throughout the trial. The response window (rewarded stimulus-to-touch 950 
latency) was reduced during behavioral training to 500 ms during the testing session. Mice 951 
were trained with high amplitude stimuli (620 µm) and then tested in the same session with 952 
seven different stimulus amplitudes (in µm: 45, 80, 125, 170, 275, 385, 620) and a no-953 
stimulus trial to calculate the false alarm rate. Stimuli were presented in a randomized order. 954 
The setup was controlled with custom written software in LabView 10.0 (National 955 
Instruments 2010). Drug injections of OB-1 or DMSO alone were dissolved in Ringer’s 956 
solution (in mM: 135 NaCl, 5 KCl, 5 HEPES, 1.8 CaCl2, 1 MgCl2) to make the OB-1 and 957 
vehicle solution. Approximately 5 µl was injected into the digits with a glass micropipette 958 
and 10 µl into the palm with a Hamilton syringe. During the injection procedure, the mouse 959 



was anaesthetized with isoflurane (1.5 to 2.0 % in O2). The experimenter was not blinded to 960 
treatment. 961 
To construct the psychometric curves we first averaged the rates of pressing the target sensor 962 
within 500 ms from stimulus onset across 5 mice. Next we fitted the data with a sigmoid 963 
function in Igor Pro 6.11 (WaveMetrics): 964 

 ( ) = +	 	( )  965 

Mouse Pain Models and Behavioral Experiments 966 

Chronic Constriction Injury 967 
In deeply anaesthetized mice using isoflurane delivered in 100% O2 (Univentor 410 968 
Anaesthesia unit; Univentor, Malta), four loose silk (5/0; Catgut GmbH Markneukirchen) 969 
ligatures were placed around the sciatic nerve at the level of the right mid-thigh as described 970 
previously5. 971 
 972 
Spared Nerve Injury 973 
In deeply anesthetized mice (see above) a skin and muscle incision was made at the thigh to 974 
reveal the sciatic trifurcation. Distal to the sciatic’s trifurcation, nerve pieces (2-4 mm) of the 975 
sural as well as the common peroneal nerves were removed leaving the tibial nerve intact. In 976 
sham controls the surgery was performed without transecting the nerves. Wounds were 977 
closed with wound clips before anesthesia was terminated. 978 
 979 
NGF-induced Hyperalgesia 980 
 981 
A single dose of NGF (1 μg/g body weight) was injected intraperitoneal (i.p.) into adult mice 982 
and behavioral testing was performed 6h, 24h, 48h, and 72 hours post injection. 983 

Diabetic Neuropathy Model 984 
Eight week old C57Bl/6 mice were used for diabetes experiments. Diabetes was induced 985 
using previously reported protocols 11,16. Briefly, 6 consecutive intraperitoneal injections of 986 
streptozotocin (STZ, Sigma-Aldrich, # S0130) were given with 24h intervals at 60 mg/Kg 987 
body weight in citrate buffer (0.05 M, pH 4.5) to induce diabetes. Blood glucose was 988 
maintained between 400 and 500 mg/dL throughout the experimental period.  Mechanical 989 
sensitivity was measured and only those mice showing increased sensitivity to von Frey 990 
filaments as compared to basal sensitivity were selected for OB-1 testing. Vehicle or OB-1 991 
(approximately 20 µl solution, 250 pmol per paw) was injected subcutaneously into 992 
intraplantar surface of diabetic mice under mild isoflurane anesthesia and mechanical 993 
sensitivity was measured from both injected (ipsilateral) and non-injected (contralateral) 994 
paws at 4 and 24h post-injection. 995 
 996 
Assessing pain behavior. 997 
Mice were allowed to habituate to the testing apparatus (acrylic chambers 10 × 10 cm in size, 998 
suspended above a wired mesh grid) one hour prior to behavioral testing. Calibrated von-Frey 999 



hair monofilaments (Aesthesio® set of 20 monofilaments, Ugo Basil) were applied to the 1000 
plantar surface of the hind paw in order to deliver target forces from 0.008 grams to 4 grams 1001 
increasing in an approximately logarithmic scale. A single von Frey stimulus lasted for two 1002 
seconds unless the mouse withdrew its paw. The up-and-down method described by Chaplan 1003 
8 was adapted as follows: Testing began with a 0.4 g filament applied three times  A positive 1004 
response was noted if paw withdrawal was seen to all three stimuli, so that the next smallest 1005 
filament was tested next. A negative response was noted when  paw withdrawal was not seen 1006 
to at least one stimulus which was followed by testing with the next largest filament. Paw 1007 
withdrawal thresholds were calculated as the median of 23 to 30 determined turning points. 1008 
 1009 
A focused, radiant heat light source (IITC Life Science Inc.) was used to measure paw 1010 
withdrawal thresholds to heat as previously described. The light beam created a focused spot  1011 
of 4x6 mm on the hind paw. The time to paw withdrawal in response to a constantly 1012 
increasing heat stimulus (maximal active intensity = 25% of the light source) with a cutoff of 1013 
20 seconds was determined. Heat stimuli were repeated 6 times for each paw with a stimulus 1014 
interval of 1 minute.  1015 
 1016 

Generation of Stoml3LacZ and Stoml3StrepII mice 1017 

The C57BL/6J mouse BAC clones (https:bacpac.chori.org) containing the Stoml3 gene was 1018 
isolated from RPCI-23 library17. A 12-kb DNA fragment containing the exon1 and its 1019 
flanking regions of Stoml3 gene was isolated by gap repair18. Homologous recombination in 1020 
bacteria 18,19 was used to fuse an NLS-lacZ cassette to the ATG of Stoml3 and to introduce 1021 
the self-excision neo cassette 20 into the Stoml3 locus. Similarly, homologous recombination 1022 
in bacteria was used to introduce a Strep-TagII after the ATG of Stoml3 and a neomycin 1023 
cassette flanked by two loxP into the first intron of Stoml3 locus to generate the Stoml3StrepII 1024 
allele. In both targeting vectors the MC1-diphteria toxin A (DTA) cassette was placed at the 1025 
3’ end of the vector and was used for negative selection. Colonies of the E14.1 ES cell line 1026 
(129/Ola) that had incorporated the targeting vector into their genome were selected by G418 1027 
and analyzed for homologous recombination by Southern blot analysis using 5’ and 3’ probes 1028 
that lie outside of the targeting vector. Two clones were microinjected into C57BL/6 1029 
blastocysts to generate chimeras that transmitted the Stoml3LacZ allele or the Stoml3StrepII 1030 
allele.  1031 
The Stoml3LacZ strain was genotyped using Stoml3-LacZ F: gac agt gtg atg tca ggg aag; LacZ 1032 
int R: cct tcc tgt agc cag ctt tca tc, Stoml3-LacZ R: cct tgt aaa ctg ata gcg ggg ac primers. The 1033 
Stoml3StrepII strain was genotyped using Stoml3-Strep F: gta gca gtg ttg ttt aga aag together 1034 
with Stoml3-StrepII R2 gct agc cat ggc tca ttc ttg for the mutant allele or with Stoml3-Strep 1035 
R1 aca gtg atg atg tcc cag c for the wild type allele.  1036 
 1037 
The Stoml3StrepII allele could conceivably negatively alter the function of the STOML3 1038 
protein. We thus generated homozygous Stoml3StrepII/StrepII mice and used the ex vivo skin 1039 
nerve preparation to determine if cutaneous mechanorecpetors lose mechanosensitivity in this 1040 
strain. Recordings from 4 wild type littermate controls and 4 Stoml3StrepII/StrepII mice revealed 1041 



no significant differences in the incidence of mechanoinsensitive fibers between the 1042 
genotypes. Amongst Aβ-fibers mechanoinsensitive fiber incidence was 1/21 (5%) and 0/23 1043 
(0%) for wild type and Stoml3StrepII/StrepII mice respectively Amongst Aδ-fibers 1044 
mechanoinsensitive fiber incidence was 0/12 (0%) and 1/11 (9%) for wild type and 1045 
Stoml3StrepII/StrepII mice, respectively.  1046 
 1047 

Histochemistry 1048 

Mice were perfused with ice-cold PBS followed by 0.5% gluteraldehyde for 20 minutes. 1049 
Post-fixed lumbar DRGs were washed several times in PBS and cryoprotected in 30% 1050 
sucrose overnight at 4°C. DRGs were embedded in O.C.T. Tissue-Tek (Sakura Finetek, 1051 
Netherland) on dry ice and stored at -80°C. Tissue was on a Cryostat CM3050S (Leica) and 1052 
slides were incubated in X-gal reaction buffer (35 mM potassium ferrocyanide, 35 mM 1053 
potassium ferricyanide, 2mM MgCl2, 0.02% Nonidet P-40, 0.01% Na deoxycholate and 1 1054 
mg/ml of X-Gal) for 2 days at 37°. Slices were washed several times in PBS until the solution 1055 
no longer turned yellow, air-dried and sealed with a coverslip.  1056 
Sections were observed on a Zeiss Axiovert 135 microscope using Zen imaging software 1057 
(Zeiss, Germany). Image J (NIH, USA) was used to manually trace the outlines of cell in 1058 
order to obtain cell area. Electron microscopy was performed on nerves using standard 1059 
methods as previously described7.  1060 
 1061 
Western blotting 1062 
 1063 
Tissues from Stoml3StrepII/StrepII and control mice were lysed with 8 M urea buffer and protein 1064 
concentration was determined using the Bradford reagent. Proteins were separated by SDS-1065 
PAGE, followed by Western blot analysis using mouse Strep-tagII antibody (2-1507-001, 1066 
IBA), PGP 9.5 antibody (ab10404, Abcam) and mouse anti β actin (A1978, Sigma). 1067 
Appropriate horseradish peroxidase-conjugated secondary antibodies were used for 1068 
chemiluminescence (ECL, Millipore or Supra, Thermo scientific SuperSignal). 1069 
 1070 
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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