80 research outputs found

    Measuring the Orbital Angular Momentum of Electron Beams

    Full text link
    The recent demonstration of electron vortex beams has opened up the new possibility of studying orbital angular momentum (OAM) in the interaction between electron beams and matter. To this aim, methods to analyze the OAM of an electron beam are fundamentally important and a necessary next step. We demonstrate the measurement of electron beam OAM through a variety of techniques. The use of forked holographic masks, diffraction from geometric apertures, diffraction from a knife-edge and the application of an astigmatic lens are all experimentally demonstrated. The viability and limitations of each are discussed with supporting numerical simulations.Comment: 5 pages, 4 figurs

    HAADF-STEM block-scanning strategy for local measurement of strain at the nanoscale

    Full text link
    Lattice strain measurement of nanoscale semiconductor devices is crucial for the semiconductor industry as strain substantially improves the electrical performance of transistors. High resolution scanning transmission electron microscopy (HR-STEM) imaging is an excellent tool that provides spatial resolution at the atomic scale and strain information by applying Geometric Phase Analysis or image fitting procedures. However, HR-STEM images regularly suffer from scanning distortions and sample drift during image acquisition. In this paper, we propose a new scanning strategy that drastically reduces artefacts due to drift and scanning distortion, along with extending the field of view. The method allows flexible tuning of the spatial resolution and decouples the choice of field of view from the need for local atomic resolution. It consists of the acquisition of a series of independent small subimages containing an atomic resolution image of the local lattice. All subimages are then analysed individually for strain by fitting a nonlinear model to the lattice images. The obtained experimental strain maps are quantitatively benchmarked against the Bessel diffraction technique. We demonstrate that the proposed scanning strategy approaches the performance of the diffraction technique while having the advantage that it does not require specialized diffraction cameras

    Prospects for versatile phase manipulation in the TEM: beyond aberration correction

    Full text link
    In this paper we explore the desirability of a transmission electron microscope in which the phase of the electron wave can be freely controlled. We discuss different existing methods to manipulate the phase of the electron wave and their limitations. We show how with the help of current techniques the electron wave can already be crafted into specific classes of waves each having their own peculiar properties. Assuming a versatile phase modulation device is feasible, we explore possible benefits and methods that could come into existence borrowing from light optics where so-called spatial light modulators provide programmable phase plates for quite some time now. We demonstrate that a fully controllable phase plate building on Harald Rose's legacy in aberration correction and electron optics in general would open an exciting field of research and applications.Comment: 9 pages, 4 figures, special Ultramicroscopy issue for PICO2015 conferenc

    Using electron vortex beams to determine chirality of crystals in transmission electron microscopy

    Full text link
    We investigate electron vortex beams elastically scattered on chiral crystals. After deriving a general expression for the scattering amplitude of a vortex electron, we study its diffraction on point scatterers arranged on a helix. We derive a relation between the handedness of the helix and the topological charge of the electron vortex on one hand, and the symmetry of the Higher Order Laue Zones in the diffraction pattern on the other for kinematically and dynamically scattered electrons. We then extend this to atoms arranged on a helix as found in crystals which belong to chiral space groups and propose a new method to determine the handedness of such crystals by looking at the symmetry of the diffraction pattern. Contrary to alternative methods, our technique does not require multiple scattering which makes it possible to also investigate extremely thin samples in which multiple scattering is suppressed. In order to verify the model, elastic scattering simulations are performed and an experimental demonstration on Mn2_2Sb2_2O7_7 is given where we find the sample to belong to the right handed variant of its enantiomorphic pair. This demonstrates the usefulness of electron vortex beams to reveal the chirality of crystals in a transmission electron microscope and provides the required theoretical basis for further developments in this field

    Asymmetry and non-dispersivity in the Aharonov-Bohm effect

    Get PDF
    Decades ago, Aharonov and Bohm showed that electrons are affected by electromagnetic potentials in the absence of forces due to fields. Zeilinger's theorem describes this absence of classical force in quantum terms as the "dispersionless" nature of the Aharonov-Bohm effect. Shelankov predicted the presence of a quantum "force" for the same Aharonov-Bohm physical system as elucidated by Berry. Here, we report an experiment designed to test Shelankov's prediction and we provide a theoretical analysis that is intended to elucidate the relation between Shelankov's prediction and Zeilinger's theorem. The experiment consists of the Aharonov--Bohm physical system; free electrons pass a magnetized nanorod and far--field electron diffraction is observed. The diffraction pattern is asymmetric confirming one of Shelankov's predictions and giving indirect experimental evidence for the presence of a quantum "force". Our theoretical analysis shows that Zeilinger's theorem and Shelankov's result are both special cases of one theorem.Comment: 16 pages, 5 figure

    Shaping electron beams for the generation of innovative measurements in the (S)TEM

    Get PDF
    In TEM, a typical goal consists of making a small electron probe in the sample plane in order to obtain high spatial resolution in scanning transmission electron microscopy. In order to do so, the phase of the electron wave is corrected to resemble a spherical wave compensating for aberrations in the magnetic lenses. In this contribution we discuss the advantage of changing the phase of an electron wave in a specific way in order to obtain fundamentally different electron probes opening up new application in the (S)TEM. We focus on electron vortex states as a specific family of waves with an azimuthal phase signature and discuss their properties, production and applications. The concepts presented here are rather general and also different classes of probes can be obtained in a similar fashion showing that electron probes can be tuned to optimise a specific measurement or interaction

    Electron Bessel beam diffraction for precise and accurate nanoscale strain mapping

    Full text link
    Strain has a strong effect on the properties of materials and the performance of electronic devices. Their ever shrinking size translates into a constant demand for accurate and precise measurement methods with very high spatial resolution. In this regard, transmission electron microscopes are key instruments thanks to their ability to map strain with sub-nanometer resolution. Here we present a novel method to measure strain at the nanometer scale based on the diffraction of electron Bessel beams. We demonstrate that our method offers a strain sensitivity better than 2.5⋅10−42.5 \cdot 10^{-4} and an accuracy of 1.5⋅10−31.5 \cdot 10^{-3}, competing with, or outperforming, the best existing methods with a simple and easy to use experimental setup.Comment: This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 114, 243501 (2019) and may be found at https://aip.scitation.org/doi/abs/10.1063/1.5096245 Data available at: https://doi.org/10.5281/zenodo.2566137 and code available at: https://bitbucket.org/lutosensis/tem-thesis/sr
    • …
    corecore