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ARTICLE

Asymmetry and non-dispersivity in the Aharonov-
Bohm effect
Maria Becker1, Giulio Guzzinati 2, Armand Béché 2, Johan Verbeeck2 & Herman Batelaan3

Decades ago, Aharonov and Bohm showed that electrons are affected by electromagnetic

potentials in the absence of forces due to fields. Zeilinger’s theorem describes this absence of

classical force in quantum terms as the “dispersionless” nature of the Aharonov-Bohm effect.

Shelankov predicted the presence of a quantum “force” for the same Aharonov-Bohm phy-

sical system as elucidated by Berry. Here, we report an experiment designed to test She-

lankov’s prediction and we provide a theoretical analysis that is intended to elucidate the

relation between Shelankov’s prediction and Zeilinger’s theorem. The experiment consists of

the Aharonov-Bohm physical system; free electrons pass a magnetized nanorod and far-field

electron diffraction is observed. The diffraction pattern is asymmetric confirming one of

Shelankov’s predictions and giving indirect experimental evidence for the presence of a

quantum “force”. Our theoretical analysis shows that Zeilinger’s theorem and Shelankov’s

result are both special cases of one theorem.
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The Aharonov-Bohm (AB) effect1–6 entails the presence of a
phase shift caused by a magnetic flux enclosed by an
electron interferometer. It is thought to demonstrate the

physical reality of potentials2,3, as opposed to the earlier inter-
pretation that potentials were merely a mathematical tool3,4. The
reason for this change in understanding came about because the
fields outside a magnetic flux tube, such as provided by a perfect
solenoid (infinitely long and infinite winding density), are zero,
thus eliminating the possibility of a classical Lorentz force. Under
the assumption that the solenoid is unperturbed5,6, there is no
field that can act locally on the electrons. However, the non-zero
vector potential can have a local effect that results in a phase shift.
Notwithstanding the general acceptance of these ideas, this issue
remains a topic of debate on non-locality7–10, the interpreta-
tion11–14, and existence of the effect15,16.

The AB effect has been observed for free electrons in a series of
ever more refined experiments17–21, as well as in conductors22–25.
The absence of a longitudinal force, as made apparent by the
absence of electron time delays, has been investigated more
recently. These time delays, predicted by alternative theories5,
have been ruled out26. However, deflection, another indicator of
force, has been predicted by Shelankov27, elucidated by Berry28,
and theoretically confirmed by Keating and Robbins29. The
deflection is accompanied by a characteristic asymmetry in the
electron diffraction pattern providing an experimental signature.

The presence of force has been operationally defined by Zei-
linger using the expectation value of position30. If the expectation
value differs from the value obtained for free propagation, then a
force is present. For experiments with electron beams, the pre-
sence of a longitudinal force along the beam would lead to time
delays in the expectation value of the arrival time, while a
transverse force would lead to deflections. Zeilinger’s theorem, as
expounded by Peshkin31, indicates that a characteristic feature of
the AB effect is its dispersionless (i.e., force-free) nature.
Experimental demonstrations of the dispersionless nature of AB-
duals32, including the He-McKellar-Wilkens effect, have been
performed33, while a demonstration of the dispersionless nature
of the magnetic AB effect has yet to be reported34,35.

In this paper, we report the observation of electron diffraction
asymmetry consistent with theory. To this end, an electron beam
is passed through a small aperture that holds a magnetized
nanorod. It is confirmed that reversal of the magnetization
direction reverses the observed asymmetry. This experimental
result provides support for Shelankov’s theoretical prediction, and
thus indirectly indicates the presence of force. A crucial experi-
ment remains necessary to directly demonstrate the electron
beam deflection by measuring the expectation value. The

presence of force is in apparent contradiction to textbook
descriptions of the AB effect. We report a theorem that resolves
this issue by showing the absence of classical forces and the
presence of quantum “forces”. The absence of classical forces in
the longitudinal direction of the electron’s motion is consistent
with Zeilinger’s theorem and supported by experiment26. How-
ever, Zeilinger’s theorem cannot be applied to the transverse
motion for the AB physical system. The theorem is correct, but its
assumptions are not generally applicable to the physical situation
considered. Shelankov’s prediction pertains to the transverse
motion of the electron for the AB physical system and is sup-
ported by our experimental results. Our deflection theorem is a
generalization of Peshkin’s approach, and when applied to the
infinitesimal flux-line yields Shelankov’s and Zeilinger’s results as
two limiting cases. Additionally, the deflection theorem is applied
to a finite-size flux tube to provide the connection to experiment.

Results
SB approach. To explain the theoretical prediction, consider a
coherent electron beam passing by a current-carrying solenoid as
illustrated in Fig. 1. The solenoid is assumed to be ideal, i.e., it
carries no stray fields and its field is not affected by the passing
beam. We are interested in obtaining the far-field electron dif-
fraction pattern. Specifically, the expectation value of the trans-
verse position of the electron is used to assess whether or not a
force acted during the passage of the electron by the solenoid.
This determination of force is studied in several steps. In the first
step, Berry’s derivation28 of Shelankov’s result27 is summarized.
In the second step, we derive a theorem that yields Zeilinger’s
theorem31 and Shelankov’s result as special limiting cases. In the
third step, Shelankov’s result is used as a benchmark for a path
integral simulation, which allows for the simulation of detailed
experimental parameters. A de Broglie-Bohm viewpoint of the
physical scenario is provided in step four, which serves to illus-
trate the term quantum “force”, as introduced by Berry, and
Keating and Robbins.

Berry identifies the problem as two-dimensional and describes
the incoming electron wave with a superposition of multiple
plane waves28. The incoming waves have a Gaussian distribution
of wave vector directions in the x–y plane, which yields
Shelankov’s result in the paraxial approximation,

cparaxial α; θð Þ ¼ exp � 1
2
θ2w2

� �
´ cos παð Þ þ sin παð Þerfi wθffiffiffi

2
p

� �� �

ð1Þ
Here, c(α, θ) is the probability amplitude for electrons to be

x

y

z

Fig. 1 Physical system schematic. An electron beam (blue) diffracts from an aperture that holds a magnetic flux line, here represented by a solenoid. The
solenoid is opaque to the electrons, and the electrons pass through an area where there is no magnetic or electric field, and thus no classical force. The
non-zero expectation value of position, represented by a left-right asymmetry in the strength of the detected electrons (green), indicates the presence of a
quantum “force” for the Aharonov-Bohm physical system
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scattered in the θdirection (defined with respect to the x-axis in
the x–y plane) for a magnetization flux, Φ, of the infinitesimal
solenoid (or magnetic flux line), where Φ is indicated in quantum
units by α = −eΦ/h. The r.m.s angular width of the incident
electron distribution is 1=w

ffiffiffi
2

p
. The relative probability distribu-

tion obtained from |c(α, θ)|2is shown (Fig. 2) for three different
values of α. When α = 1/4, an assymetric probability distribution
with a non-zero deflection is found. Another approach is the use
of a quantum “force” operator as shown by Keating and
Robbins29. They successfully ensure the Hermiticity of the
operator and obtain the same deflection.

Deflection theorem. Consider an initial state (t= 0) of a Gaus-
sian wavepacket in the momentum representation with a nor-
malized momentum distribution, a width 1/a, and a linear phase
ramp proportional to x0,

φ k; 0ð Þ ¼ a2

π

� �1=4

e� k�k0ð Þ2a2=2e�i k�k0ð Þx0 : ð2Þ

We assume that after an interaction the wavepacket is modified
to

φA k; 0ð Þ ¼ a2

π

� �1=4

e� k�k0ð Þ2a2=2e�i k�k0ð Þx0F kð Þ; ð3Þ

where F(k) is an arbitrary complex function dependent on
momentum; φA(k, 0) is normalized. This means that the
interaction is assumed to be approximately instantaneous (which
holds for the physical system studied, see Methods). After the
interaction, the time-dependent wavefunction is written in the
position representation as the wavepacket

ψ xi; tð Þ ¼ 1ffiffiffiffiffi
2π

p
Z

φA k; 0ð Þe�i kxi�ω kð Þtð Þdk; ð4Þ

where xi is the position, which can be taken to be the transverse,
xT, or longitudinal, xL, coordinate and ω(k)= ℏk2/2m. The
expectation value of the position operator xi= i∂/∂k for the
wavefunction in Eq. (4) is given by the resulting deflection
theorem

xih i ¼ xi0 þ
�h kh i
m

t þ affiffiffi
π

p
Z

∂δ

∂k
Rj j2e� k�k0ð Þ2a2dk: ð5Þ

where F(k)= R(k)eiδ(k) in polar coordinates. See Methods section
for additional derivation steps.

Dispersionless and quantum “forces”. Now, we can investigate
two specific cases of the interaction: (1) the Zeilinger-Peshkin
(ZP) scenario, and (2) the Shelankov-Berry (SB) scenario. In the
first case, it is assumed that the interaction results in a pure phase
shift (see Peshkin’s clear derivation31);

δ kð Þ ¼ δ kLð Þ; R kLð Þ ¼ 1; ð6Þ
where the longitudinal momentum, kL, has a Gaussian distribu-
tion e� kL�kL0ð Þ2a2=2 (Fig. 3). In this case, the expectation value for
the position follows directly from Eq. (5),

xLh i ¼ x0 þ
�hk0
m

t þ affiffiffi
π

p
Z

∂δ

∂k
e� k�k0ð Þ2a2dk: ð7Þ

This is Zeilinger’s dispersivity theorem31. In words, it states
that when an interaction is dispersionless (i.e., ∂δ/∂k= 0), there is
no shift of the wavepacket’s position expectation value compared
to its classical counterpart. It has motivated experiments that
demonstrate the dispersionless nature of the AB-effect32,33, which
are interpreted to mean that the AB-effect is force-free.

In the second case, the interaction is assumed to lead to a phase
step in position, F(y)= ei2πα(H(y)−1/2), where H(y) is the Heavi-
side step function, the transverse coordinate xT= y, α is the
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Fig. 2 Far field electron diffraction. An electron diffraction pattern for a 1-D aperture that holds a magnetic flux line is given in the far-field. The result of a
path integral simulation (thick gray lines) is in agreement with Berry’s analytic result (black, blue and purple line) and is shown for three magnetic flux line
of strengths, α. A non-zero expectation value of position for the case that α= 1/4 indicates the presence of a force for the AB physical system. The path
integral simulation is developed for the purpose of including a 2-D circular aperture, a partially coherent electron beam, and a finite-sized magnetic flux bar
(instead of a flux line) to facilitate a detailed comparison with experiment
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amount of phase shift induced by the interaction, and the
transverse momentum, kT, has a Gaussian distribution,
e� kT�kT0ð Þ2a2=2.

In the momentum representation, Shelankov and Berry show
that this can be written as (see also Eq. (1))

φA kT; 0ð Þ ¼ β2

2π

� �1=4
e�β2k2T=4

´ cos απð Þ þ sin απð Þerfi βkT=2ð Þf g;
ð8Þ

where we have chosen kT0 = 0. Note that this result can be
extended to a finite-size fluxtube (Methods). Using the term F to
represent the effect of the momentum-dependent interaction, Eq.
(8) becomes

φA kT; 0ð Þ ¼ β2

2π

� �1=4

e�β2k2T=4FðkTÞ: ð9Þ

As the complex error function of a real argument is itself real,
case 2) can be defined by,

F kTð Þ ¼ R kTð Þ and δ kTð Þ ¼ 0: ð10Þ
The expectation value of the position (Eq. (5)) becomes

yh i ¼ y0 þ
�h kTh i
m

t; ð11Þ

where the expectation value of the momentum needs to be
evaluated. To do so, the initial wavepacket,

φA kT; 0ð Þ ¼ β2

2π

� �1=4
e�β2k2T=4R kTð Þ, is used. The momentum term

in Eq. (11) is simplified using the antisymmetry of the imaginary
error function. The expression used by Berry (Eq. (16) in ref. 28)
can be recovered by identifying wθ=

ffiffiffi
2

p ¼ βkT=2, where the
deflection angle is given by θ ≈ kT/kL0 and w is a measure of the
width of the wavepacket. The final result for the transverse
displacement is

yh i ¼ y0 þ
�h
mβ

ffiffiffi
2
π

r
sin 2παð Þt; ð12Þ

a non-zero average value that oscillates with the amount of flux
enclosed, Φ = −αh/e. In summary, the ZP scenario, and the SB
scenario given by Eqs. (6) and (10), respectively, are special cases
of the deflection theorem.

Path integral. Shelankov’s result can be compared to a simulation
based on Feynman’s path integral approach36–39. The path inte-
gral and Shelankov approaches are in excellent agreement at the
detection plane (Fig. 2) for an initial wavepacket with a transverse
phase step

Ψi y; 0ð Þ ¼ ei2πα H yð Þ�1=2ð Þe�y2=β2 ; ð13Þ
where y= 0 is the location of the solenoid, and β is the transverse
width of the wavepacket. The phase step equals the AB phase,
φAB ¼ �e

R
CA � dl=�h, where A is the vector potential of the

magnetic flux, Φ, that is enclosed by the contour, C. The phase is
independent of distance from the solenoid because
�e

R
CA � dl=�h ¼ �eΦ=�h ¼ 2πα for all C. The purpose of the path

integral simulation is to model the experimental diffraction pat-
tern, where the z-direction for a finite solenoid size (instead of an
infinitely thin magnetic flux line) and a shaped aperture (instead
of a Gaussian beam) can be taken into account (see Methods).
The partial blockage of the electron wave retains the oscillatory
deflection predicted by Shelankov and Berry.

Quantum “force”. The quantum nature of the force can be
understood in the de Broglie-Bohm interpretation of quantum
mechanics37. The equation of motion for the electron wavepacket
can be written as dp/dt= Fclas+ Fqu in terms of the classical force,
Fclas=−dV/dy, and the quantum “force”, Fqu=−dQ/dy, where
the quantum potential is given by Q=−ℏ2∇2A/2mA. If the
derivative of the quantum potential, Q, (with the wavepacket
defined as Aeiϕ) is non-zero, then there is a local quantum
“force”. However, this force, which acts on individual de Broglie-
Bohm trajectories, is not measurable40,41. Operationally, the
presence of force is defined by the presence of an average
deflection. There is an average deflection if the integral

R
∂Q
∂y dy is

non-zero.
The local derivative ∂Q/∂y can be calculated for the wavepacket

(Eq. (15) in ref. 28) to be non-zero and finite after the electron has
passed the magnetic flux line. The spatial derivative in the
quantum potential can not be evaluated immediately after the
interaction with the solenoid because the wavefunction is given
by a step function. The wavefunction can be propagated for a
short distance so it becomes a smooth function. The quantum
potential after propagating 1% of the distance from the magnetic
flux line to the detection plane is shown in Fig. 4. If the flux line is
not magnetized, the quantum potential is left-right symmetric

Peshkin/Zeilinger

Case 1

xL
ΦB

y

Case 2

Shelankov/Berry

e–(kL–kL0)
2a2/2

e–(y /�)2
ΦB

Fig. 3 Dispersivity theorem and quantum “force”. The AB physical system, which involves the passage of electrons (blue) by an area of magnetic flux ΦB

(gray circle), is analyzed in two ways. In case (1), the effect on a transversely-localized wavepacket with a longitudinal, Gaussian momentum distribution,
e� kL�kL0ð Þ2a2=2, yields Zeilinger’s dispersivity theorem, implying the absence of forces that can lead to time delays. In case (2), the effect on a transverse,
Gaussian position distribution yields Shelankov’s result to reveal the presence of a quantum “force” that leads to transverse deflection. Note that in both
cases the electron wave never penetrates the area of magnetic flux. In physical realizations, the material that supports the magnetic flux area blocks the
electron wave

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09609-9

4 NATURE COMMUNICATIONS |         (2019) 10:1700 | https://doi.org/10.1038/s41467-019-09609-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


about y= 0. If the flux line is magnetized, the left-right symmetry
is broken leading to an average deflection in the far-field
diffraction pattern (for α different from 0 and 0.5 modulo 1).
The presence of the asymmetric quantum potential supports
Keating and Robbins’29 analysis in terms of a quantum “force”
operator. Thus, even in the absence of a classical force (for the AB
physical system), a quantum “force” can lead to a non-zero
average deflection. Finally, it is interesting to note that an array of
flux lines creates a ladder of phase steps, and provides a classical-
like force42. In a sense this provides a middle ground between a
single phase step (quantum “force”) and phase slope (classical
force).

Experimental asymmetry observed. To experimentally verify the
predicted probability asymmetry about y= 0, we used a transmission

electron microscope (TEM) as a versatile electron optical bench tool
for quantum experiments. A thin and long ferromagnetic rod was
used to create a well-defined magnetic flux line (see Methods). This
setup was already successfully applied for mapping specific plasmon
modes in nanodevices43. A collimated and unfocussed electron beam
uniformly illuminates the 5 µm aperture that holds the magnetic
nanorod (Fig. 5). The nanorod is 30 µm long, 450 nm wide, 1 µm
thick and supports a 65 nm layer of nickel. The 1 µm thickness is
sufficient to completely block the electron wave.

A typical far-field intensity profile of the ferromagnetic nickel
rod is displayed in Fig. 6, revealing the asymmetric behavior as
predicted by Shelankov. It is also in qualitative agreement with
the calculations in Fig. 2. In order to demagnetize the nanorod
in situ, we exposed the rod to a high intensity electron beam for
several hours which led to damage in the nickel film and the loss
of its magnetic properties. As the demagnetization occurs in a
fairly abrupt fashion, it was not possible to scan through a series
of varying magnetizations, and the far-field patterns were
recorded only for the fully-magnetized and demagnetized rods.
The far-field profile resulting from a demagnetized rod is also
displayed in Fig. 6 for comparison, revealing a single symmetric
electron diffraction peak as expected. The results of path integral
simulations, with magnetic flux line strengths of α= 0.39 and α
=−0.02, show good agreement with the experimental results
(Fig. 6, thick, black curves). The counts at each data point are
measured with a relative error below 0.005 and are smaller than
the data marker size. An inclusive range of α values is provided to
illustrate that there is agreement with the expected values of 0.41
(the value experimentally measured by electron holography) and
0.00 (see Fig. 6 caption). The nanorod, which lies in the y–z plane,
and the diffraction pattern are aligned to within two degrees. In
the simulation, the agreement was improved by including partial
spatial coherence, which is common in electron microscopy and
depends in a sensitive way on the exact setup of the microscope.
In particular, the slight positive value in the dip region of the
experimental profile is mostly due to partial coherence, with an
additional small contribution due to the modulation transfer
function of the camera. The average relative y-position of the
diffraction pattern with and without magnetization cannot be
used to establish the presence of a deflection, as this average
position shifts between measurements. The demagnetization and
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Fig. 4 The Quantum Potential. The potential, −ℏ2∇2A/2mA, is calculated
from the wavepacket Aeiϕ that is propagated 1% of the distance from the
magnetic flux line to the detection plane. The wavefunction is obtained
from the path integral calculation.The left-right asymmetry is caused by the
phase shift induced by the magnetic flux line and illustrates why the word
“force” can be used in the present context
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Fig. 5 Experimental schematic. A magnetized nanorod was placed in an electron microscope in the condenser aperture plane for 60 keV electron energy,
and in the sample plane for 300 keV. An electron microscope shadow image is shown. The far-field diffraction pattern was recorded. An example of a raw
image is shown
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magnetization procedure between the magnetized and non-
magnetized measurements and necessary readjustment of the
electron beam causes small position shifts in the far-field
diffraction pattern. This shift is larger than the predicted
deflection, which prevents the direct observation of deflection.
Hence, we report only the presence of an asymmetric intensity
profile. A future experiment that establishes a non-zero deflection
remains highly desirable.

As a verification of symmetry reversal, we placed the nanorod
in the image plane of the electron miscroscope where the vicinity
of a magnetic lens could be used to flip the magnetization. To that
end, the nanorod was rotationally aligned and anti-aligned in situ,
and the magnetic field of the lens was ramped up to a high value.
The electron energy was set at 300 keV. The accumulated
phaseshift is energy-independent and the diffraction pattern for
both the 60 keV and the 300 keV data is recorded in the far-field.
The result is that the symmetry changes sign with the direction of
magnetization (inset Fig. 7).

Additionally the magnetized rod was gradually heated in
increments of 10 °C. The resulting reduction in magnetization
leads to diffraction symmetry reversals. The last two diffraction
pattern reversals and the diffraction above the Curie temperature
(when the nanorod is demagnetized) are shown in Fig. 7 together
with the path integral simulation. The phase step size for the
nanorod was estimated from experimental holographic phase-
maps to be 0.58 π (α= 0.29) and 1.32 π (α= 0.66).

In the simulation the position of the diffraction pattern, its
height, and the amount of incoherence was fitted.

Role of fringing fields. Fringing fields have been considered a
confounding factor in AB-type experiments, and could, in prin-
ciple, lead to distortions of the electron diffraction pattern in our

experiment. The fringing fields for our nanorod have been ana-
lyzed in an earlier paper 43. The finite length of the nanorod
causes the presence of fringe fields at the hole through which the
electrons pass and determines its strength (the longer the rod, the
lower the fields). Thus the nanorod length is by design much
longer than the hole diameter, in order to minimise the strength
of the fringing field. In these conditions it would be a coincidence
if the weak fringing fields at the hole (that emanate from the ends
of the nanowire, see Fig. 8a) would yield the asymmetry predicted
by Shelankov and Berry. It is interesting to compare our setup to
the first experimental report of the AB-effect by Chambers. There
were confounding fringing fields, but the experiment nevertheless
demonstrated the AB-effect. Similarly, our report is a confirma-
tion of Shelankov’s prediction.

A computation of the magnetic field given by a finite
continuous solenoid, scaled to the properties of our nanorod
(30 µm long, α= 0.41) was also performed. We used this field to
compute the AB-phase shift for an electron plane wave. The
phase variation across half the 5 µm aperture is found to be no
more than 0.05π rad. Approximating this as a constant phase
gradient, we estimate the deflection due to magnetic fringing
fields: ~5e-8 rad. As the equivalent length of our setup is about
200 m, this would cause a deflection of about 10 µm. Our
diffraction pattern’s characteristic size, considered to be the
distance between the two intensity maxima, is 373 µm. The
deflection due to this fringe field is thus relatively small and does
not appreciably affect the shape of our diffraction pattern. The
shape of the diffraction pattern could be affected by second and
higher order phase shifts (for example, a quadratic phase shift),
but these effects are much smaller, and thus we can conclude that
the shape of the diffraction pattern is dominantly given by the
phase step and not by fringing magnetic fields. An experimental
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Fig. 6 Experimental confirmation. An electron diffraction pattern for an aperture that holds a magnetic nanorod (flux line) is measured in the far-field
at 60 keV. Magnetized rod experimental data (red dots), path-integral calculation results (thick, black lines, α= 0.39, enclosed by thin, gray lines,
α= 0.35 – 0.43), demagnetized rod experimental data (blue squares) and path-integral calculation results (thick, black lines, α=−0.02, enclosed by thin,
gray lines, α=−0.06 – 0.02) are shown. An overall shift on the screen position is applied for both magnetized and demagnetized experimental diffraction
patterns. The results of the path-integral calculations are in agreement with the experimental data and show an asymmetric profile consistent with the
predicted spatial deflection, and thus provide indirect evidence of the presence of force
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phase map recorded through electron holography is included in
Fig. 8b to illustrate the absence of large phase gradients or large
phase distortions. The blue and green regions indicate the wanted
phase step while the multi-colored band indicates the magnetized
rod where the amplitude is zero and the phase is undetermined.
In the lower left corner, some small phase distortion is visible as
discussed above. Such high noise areas are due to the fact that it is

impossible to reconstruct the phase in areas where no interference
fringes are visible in the original holograms, whether due to
strong shadowing from the sample (such as for the ‘thick’ metal
rod) or due to the area being outside the region of interference
(top right and bottom left corners). For further relevant examples
of magnetic imaging by electron holography see Tonomura44,
Béché et al.45,46, and Blackburn and Loudon47. The region where

a

c

b

0

2 μm

�

Fig. 8 Fringe fields. a The magnetic field of a 30 µm long magnetized rod is calculated and superimposed over a 5 µm diameter hole. b An experimentally
measured phase map of the magnetized rod (center multicolored area) and its direct vicinity shows a phase step (blue to green). c An electron microscope
image of the rod mounted in the middle of the 5 µm diameter hole shows the area (white square) where the phasemap was measured
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Fig. 7 Symmetry reversal. Electron diffraction patterns are detected in the far-field at 300 keV for an aperture that holds a nanorod (same rod as in Fig. 6).
Three diffraction patterns corresponding to measured phase steps of 1.32 π, 0.58 π, and 0 were recorded. The temperature of the magnetized rod was
increased to reach these phase steps. The inset gives magnetization reversal by an external magnetic field
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the phase map is recorded is overlayed with an electron
microscope image of the rod and hole is shown.

Discussion
In summary, an element of Shelankov’s theoretical prediction is
confirmed experimentally; a path integral simulation gives good
agreement with the experiment and provides the connection
between the prediction and experimental result. This gives
indirect experimental support for the presence of a quantum
“force” in the AB effect.

Theoretically, it is shown that even though Zeilinger’s dis-
persivity theorem is valid for electron propagation in the long-
itudinal direction, it should not be applied to the transverse
direction, and the usual statement that the AB effect is not
accompanied by forces is not valid. A theorem is found (Eq. (5))
for which Zeilinger’s theorem and Shelankov’s result are limiting
cases. Classical forces are not needed to explain the observed
effect on the electron. Under the assumption that the passing
electron does not affect the solenoid, the observed phenomenon
remains a pure quantum effect. The observation supports Ahar-
onov and Rohrlich’s interpretation that non-local potentials
explain the observed phenomenon within a theory that only
permits gauge-invariant quantities48. The observation does not
exclude forces on the nanorod, and thus does not exclude the
possibility of Boyer’s or Vaidman’s descriptions involving force
on the flux tube7,11. Identification of the momentum terms of the
complete system, consisting of the flux tube and electron,
including hidden momentum48,49, may need to be considered in
view of the now established presence of a quantum “force”12.

Even if the experiment detects the presence of a magnetic flux
line, it does not offer an approach to search for magnetic
monopoles through the detection of Dirac strings (which are
themselves examples of magnetic flux lines) as the force is pre-
dicted to be zero when the phase shift 2πα has a value of modulo
π (Eq. 12). This further highlights the quantum nature of the
force. We speculate that the SB force may lead to a new detection
mode or architecture for SQUID magnetometry50, as its coun-
terpart, the longitudinal AB effect, underlies the function of
SQUIDs.

Methods
Interaction range. The interaction is assumed to be approximately instantaneous.
The purpose of this section is to justify this approximation. The physical system
studied is the Aharonov-Bohm one, which for a flux line gives a vector potential
that is approximated by A rð Þ ¼ 1

2πr ϕBφ̂, where ϕB is the magnetic flux carried by
the flux line. Integrating over a closed circular particle path that contains the flux
line, gives the well-known Aharonov-Bohm phase, φAB ¼ e

�h

H
A � dl ¼ e

�h ϕB. Alter-
natively, one can integrate over a closed path that consists of two parallel straight-
line paths passing on both sides of the flux line and connecting far away from the
flux line. The closed loop integral is independent of the loop chosen, which implies
that a single straight path phase shift is given by e

�h

R1
�1A � dl ¼ φAB=2. This phase

is also independent of distance to the flux line and changes sign for path on the left
of right of the flux line. In the near-field diffraction region, defined by
LNF � d2rod=λdB, where drod is the nanorod diameter, the single path phase,

φNF ¼ e
�h

R LNF
�LNF

A � dl, is almost complete. For our parameters, d ≈ 500 nm and λdB
= 2 × 10−12 m, the near field reaches a distance of about 0.1 m. The accumulated
near-field phase shift, φNF, equals, for our parameters, 0.99995 × φAB/2 for a path
passing a hole size dimeter away from the flux line. Paths closer to the flux line
have a phase shift closer to φAB/2. The effect of this phase gradient of Δφ/d gives an
approximate deflection angle of θ= λdBΔφ/2πd ≈ 2 × 10−12 rad, where d= 5 μm is
the hole diameter. This angle is much smaller than the diffraction angle, θdiff ≈ λdB/
d ≈ 5 × 10−7 rad. In the near field, the effect of the phase should not exceed the
effect of diffraction from the rod, or, LNFθ ≤ drod, where θ= λdBΔφ/2πd, and Δφ ≤
φAB ≈ π. This condition is also satisfied and motivates the approximation of
describing the interaction by a multiplication of the electron wave with an
instantaneous phase step at the plane of the flux line.

Derivation steps of deflection theorem. To obtain the time-dependent wave-
packet in the position-representation, Eq. (4) is transformed to the momentum

representation,

φF k; tð Þ ¼ 1ffiffiffiffi
2π

p
R
ψ x; tð Þe�ikxdk

¼
ffiffi
a

p
eik0 x0

2π5=4

R R
e� k′�k0ð Þ2a2=2ei �k′x0�ω k′ð Þtð Þ

´ eik′xF k′ð Þdk′e�ikxdx

¼
ffiffi
a

p
eik0 x0

π1=4
e� k�k0ð Þ2a2=2ei �kx0�ω kð Þtð ÞF kð Þ:

ð14Þ

The expectation value of the position operator x= i∂/∂k is evaluated as follows,

xh i ¼ R
φF � k; tð Þi ∂

∂k φF k; tð Þdk
¼ affiffi

π
p

R
e� k�k0ð Þ2a2=2ei �kx0�ω kð Þtð ÞF kð Þ
h i�

´ i ∂
∂k

	 

e� k�k0ð Þ2a2=2ei �kx0�ω kð Þtð ÞF kð Þ
h i

dk

¼ affiffi
π

p
R

e� k�k0ð Þ2a2=2e�i �kx0�ω kð Þtð ÞF � kð Þ
h i

´ �i k� k0ð Þ2a2 þ x0 þ ∂ω
∂k t þ i ∂F=∂kF kð Þ

h i

´ e� k�k0ð Þ2a2=2ei �kx0�ω kð Þtð ÞF kð Þdk:

ð15Þ

Setting F(k)= R(k)eiδ(k), a further simplification is made as follows,

xh i ¼ x0 þ affiffi
π

p �h
m t

R
k Rj j2e� k�k0ð Þ2a2 dk

þ iaffiffi
π

p
R

k0 � kð Þa2 þ 1
R
∂R
∂k þ i∂δ

∂k

� �
Rj j2e� k�k0ð Þ2a2 dk

¼ x0 þ affiffi
π

p �h
m t

R
k Rj j2e� k�k0ð Þ2a2 dk

þ iaffiffi
π

p
R

∂
∂k

1
2 Rj j2e� k�k0ð Þ2a2

� �h i
dk

þ affiffi
π

p
R
∂δ
∂k Rj j2e� k�k0ð Þ2a2 dk

¼ x0 þ affiffi
π

p �h
m t

R
k Rj j2e� k�k0ð Þ2a2 dk

þ iaffiffi
π

p
R
∂S
∂k dk þ affiffi

π
p

R
∂δ
∂k Rj j2e� k�k0ð Þ2a2 dk:

ð16Þ

The expectation value of the position operator is simplified to

xh i ¼ affiffi
π

p
R
e� k�k0ð Þ2a2 �i k� k0ð Þa2 þ x0½

þ ∂ω
∂k t þ i ∂R=∂kR

i
R kð Þj j2dk:

ð17Þ

Using normalization of the wavepacket and propagation in free space (∂ω/∂k=
ℏk/m), it follows that

xh i ¼ x0 þ affiffi
π

p �h
m t

R
k Rj j2e� k�k0ð Þ2a2 dk

þ iaffiffi
π

p
R
∂S
∂k dk þ affiffi

π
p

R
∂δ
∂k Rj j2e� k�k0ð Þ2a2 dk;

ð18Þ

where S ¼ 1
2 Rj j2e� k�k0ð Þ2a2 . The term

R
∂S=∂kdk is zero for functions for which the

derivative and the functional value tends to zero at infinity. This is true for all the
cases studied here, and implies that high momentum components of the
wavepacket are not affected by the interaction. The final result is the deflection
theorem expressed in Eq. (5).

Extension to finite-size flux region. The phase step result discussed in the
“dispersionless and quantum “forces”” section was done for the theoretical con-
struct of a flux line. The analysis can be extended to the case when the magnetic
flux provided by the magnetic rod is present in a finite region, or a “flux tube”. This
is relevant as the experiment is performed for a flux tube. The analysis is done in
two ways. The first is an extension of Shelankov’s approach in momentum space,
the second is by path integration in position space. In the first approach, the
starting point is Eq. (3). For the interaction described by a phase step, the wave-
function for a finite magnetic rod size d, is given by

φd kT; 0ð Þ ¼ 1ffiffiffiffi
2π

p
R�d=2
�1 e�iαπe�y2=2β2 e�ikTydy

þ 1ffiffiffiffi
2π

p
R1
d=2e

iαπe�y2=2β2 e�ikTydy

/ e�β2k2T=2 e�iαπerf iβkTffiffi
2

p þ yffiffi
2

p
β

� ��d=2

�1

�

þe�iαπerf iβkTffiffi
2

p þ yffiffi
2

p
β

� ��d=2

�1

�
:

ð19Þ

In the flux line limit, d → 0, the Shelankov/Berry result (Eq. 8) is recovered. A
numerical evaluation of the average deflection with the deflection equation (Eq. 5)
using as input the wavefunction Eq. (19) as a function of d, is given in Fig. 9
(dashed blue line).

The initial distribution is Gaussian, the same as used by Shelankov and Berry.
The path integral for the same initial distribution is given by the solid black line
(path integral data points were calculated for 100 nm intervals and connected with
straight lines as a guide for the eye). The result is given for α= 1/4, when the
deflection is largest. (As before, the deflection oscillates with the value of α). The
agreement between the analytic extension and the path integral result is good. To
simulate the experiment an initial tophat distribution (that is uniform over the
opening of the aperture) is chosen. The qualitative behavior is the same as for the
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initial Gaussian distribution. The size of the magnetic rod used in the experiment is
labeled with dexp. The typical range over which the deflection becomes small is ~1
μm. The average expectation value was calculated by integrating in the far-field
over a 400 μm-wide detection area. This expectation value slowly converges with
detection size, while the typical range reduces with the detection size.

To illustrate the magnitude of the effect for d → 0, the deflection (Eq. 16 in
ref. 28) can be written by performing the substitution w= w0k, where k= 2π/λdB is
the wavenumber and w0 is now the waist measured in SI units. Note that Eq. (16) is
given in units of deBroglie wavelengths (see bottom page 5628 of ref. 28). That
means that the deflection angle D is of the order D·1/w × λdB/(2πw0). The order of
magnitude estimate is done using the following numbers: w0 × 5 × 10−6m, w × 5 ×
10−6 × 2π/(3 × 10−12)×107, and thus D × 10−7m. Our electron microscope camera
length is about one hundred meters, which gives a deflection on the detection
screen of 10−5m. Note that this value is smaller than the diffraction pattern pixel
size, but of the same order of magnitude.

Path integral calculation. In the path integral approach, the final wavepacket Ψf(y,
t) at the detector plane is given by36,37,

Ψf y; tð Þ ¼
Z

N exp iπl=λdBð ÞΨi y′; 0ð Þdy′; ð20Þ

where the initial wavepacket is Ψi(y′, 0), N is a normalization factor, and λdB= h/p
is the de Broglie wavelength of the electron. The length of an individual path from
some point y′ in the interaction plane (parallel to y–z located at the solenoid) toy in
the detection plane is l = (D2 + (y′ − y)2)1/2, where D is the distance between the
interaction and detection planes. Note the absence of a factor of two in Eq. (20) in
the phase factor37 as compared to constructing the matter wave using Huygens’
principle by analogy to optics38,39.

Sample fabrication and electron microscopy. A thin film (65 nm) of nickel
protected by a gold layer (1 μm) was milled using a focused ion beam (FIB)
microscope to obtain a (30 × 1 × 1) µm3 ferromagnetic rod. The rod was then
deposited with a nano-manipulator over a 5 µm aperture drilled in a SiN grid
covered with a 1 μm thick layer of gold (Fig. 4). The rod width was then thinned
down to 450 (50) nm. This gave an estimated magnetic flux line strength of α ~
0.41. The magnetic flux was experimentally assessed using off-axis electron holo-
graphy. A reference electron wave was superposed with the wave interacting with
the flux line. The large aspect ratio between the length and width of the rod allowed
for a good approximation of the rod as a single magnetic domain magnetized along
its long axis. A detailed description of such an aperture has been given in other
work43. The aperture with the ferromagnetic rod was inserted in the condenser
plane of an FEI Titan3 microscope operating at 60 kV. Objective and projector

lenses were used to image either the magnetic rod or the far-field diffraction plane,
as illustrated in Fig. 5. For the 300 kV experiment, the microscope was operated in
Lorentz mode (objective lens off). This allowed us to maintain sufficient beam
coherence over the aperture. At first, the sample was mounted in a rotation tilt
tomography holder, in order to magnetize the magnetic rod in two opposite
directions. Indeed, we purposely turned on the magnetic field of the objective lens
to 11.5% of its maximal strength (~200 mT) to force the rod magnetization in one
or the other direction along the rod axis. The rod was rotated and the holder tilted
(+78°) in order to be as parallel as possible to the objective length field, before
turning it on. To magnetize the rod in the order direction, the holder was tilted
−78° before applying the field. Secondly, the aperture was mounted on a heating
holder so that the rod could be heated in situ.

Data availability
Data available on request from the authors.
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