6 research outputs found

    Evaluation Of The Relaxant Effect Of The Nitric Oxide-independent Soluble Guanylyl Cyclase Stimulator Bay 41-2272 In Isolated Detrusor Smooth Muscle.

    No full text
    The nitric oxide (NO)-independent soluble guanylyl cyclase stimulator stimulator BAY 41-2272 was reported to produce relaxant response in different types of smooth muscle. However no study was carried out to investigate the effects of BAY 412282 in detrusor smooth muscle. Thus, this study aimed to evaluate the relaxant effects of BAY 41-2272, in isolated mouse, rat and rabbit detrusor smooth muscle. Mouse, rat and rabbit were anesthetized, and urinary bladder removed. Detrusor smooth muscle was transferred to 10-mL organ baths containing oxygenated and warmed Krebs-Henseleit solution. Tissues were connected to force-displacement transducers and changes in isometric force were recorded. BAY 41-2272 (0.001-100 microM) produced concentration-dependent detrusor smooth muscle relaxations in mouse, rat and rabbit with maximal responses of 61.3+/-6.6%, 95.1+/-9.9% and 91.7+/-5.9%, respectively. Sodium nitroprusside and glyceryl trinitrate, as well as 8-bromo-cGMP also produced detrusor relaxations, but to a much lesser extent than BAY 41-2272. The NO synthesis inhibitor L-NAME and the phosphodiesterase-5 inhibitor sildenafil had no effect in BAY 41-2272-induced responses. However, the soluble guanylyl cyclase inhibitor ODQ significantly reduced BAY 41-2272-induced relaxations. BAY 41-2272 increased the bladder cGMP levels by about of 14- and 20-fold for 10 and 100 microM, respectively, which were markedly reduced by ODQ. The cAMP levels were unaffected by BAY 41-2272. Moreover, BAY 41-2272 significantly reduced the contractile responses to extracellular Ca(2+) in an ODQ-insensitive manner. In conclusion, rabbit detrusor smooth muscle relaxations by BAY 41-2272 involve mainly cGMP production, but an additional mechanism involving Ca(2+) influx blockade independently of cGMP production appears to be involved.637171-

    Insulin Relaxes Bladder Via Pi3k/akt/enos Pathway Activation In Mucosa: Unfolded Protein Response-dependent Insulin Resistance As A Cause Of Obesity-associated Overactive Bladder.

    No full text
    We aimed to investigate the role of insulin in the bladder and its relevance for the development of overactive bladder (OAB) in insulin-resistant obese mice. Bladders from male individuals who were involved in multiple organ donations were used. C57BL6/J mice were fed with a high-fat diet for 10 weeks to induce insulin-resistant obesity. Concentration-response curves to insulin were performed in human and mouse isolated mucosa-intact and mucosa-denuded bladders. Cystometric study was performed in terminally anaesthetized mice. Western blot was performed in bladders to detect phosphorylated endothelial NO synthase (eNOS) (Ser1177) and the phosphorylated protein kinase AKT (Ser473), as well as the unfolded protein response (UPR) markers TRIB3, CHOP and ATF4. Insulin (1-100 nm) produced concentration-dependent mouse and human bladder relaxations that were markedly reduced by mucosal removal or inhibition of the PI3K/AKT/eNOS pathway. In mouse bladders, insulin produced a 3.0-fold increase in cGMP levels (P < 0.05) that was prevented by PI3K/AKT/eNOS pathway inhibition. Phosphoinositide 3-kinase (PI3K) inhibition abolished insulin-induced phosphorylation of AKT and eNOS in bladder mucosa. Obese mice showed greater voiding frequency and non-voiding contractions, indicating overactive detrusor smooth muscle. Insulin failed to relax the bladder or to increase cGMP in the obese group. Insulin-stimulated AKT and eNOS phosphorylation in mucosa was also impaired in obese mice. The UPR markers TRIB3, CHOP and ATF4 were increased in the mucosa of obese mice. The UPR inhibitor 4-phenyl butyric acid normalized all the functional and molecular parameters in obese mice. Our data show that insulin relaxes human and mouse bladder via activation of the PI3K/AKT/eNOS pathway in the bladder mucosa. Endoplasmic reticulum stress-dependent insulin resistance in bladder contributes to OAB in obese mice.5912259-7

    Vas Deferens Smooth Muscle Responses To The Nitric Oxide-independent Soluble Guanylate Cyclase Stimulator Bay 41-2272.

    No full text
    The nitric oxide-cGMP signaling pathway modulates the ejaculatory functions. The nitric oxide (NO)-independent soluble guanylate cyclase haem-dependent stimulator BAY 41-2272 potently relaxes different types of smooth muscles. However, no study investigated its effects in vas deferens smooth muscle. Therefore, we designed experiments to evaluate the in vitro relaxing responses of vas deferens to BAY 41-2272. The effects of prolonged oral intake with BAY 41-2272 in vas deferens contractions of rats treated chronically with the NO synthase inhibitor N(ω)-nitro-L-arginine methyl ester (L-NAME) were also investigated. BAY 41-2272 (0.001-100 μM) produced concentration-dependent relaxations in the prostatic and epididymal portions of vas deferens, an effect markedly reduced by the soluble guanylate cyclase inhibitor ODQ (100 μM). BAY 41-2272 significantly increased cGMP levels that were fully prevented by ODQ. In separate protocols, rats received L-NAME (20mg/rat/day) concomitantly with BAY 41-2272 (10mg/kg/day, 4 weeks), after which vas deferens contractions to electrical-field stimulation and noradrenaline were achieved. Electrical-field stimulation (1-32 Hz) evoked frequency-dependent contractions that were significantly enhanced in L-NAME-treated rats. Co-treatment with BAY 41-2272 fully reversed the increased contractile responses in L-NAME group. Noradrenaline (0.01-100 μM)-induced contractions were also greater in L-NAME-treated rats, and that was normalized by BAY 41-2272. In conclusion, BAY 41-2272 potently relaxes in vitro rat vas deferens smooth muscle and elevates the cGMP levels in an ODQ-sensitive manner. Moreover, prolonged oral intake with BAY 41-2272 restores the enhanced contractile vas deferens activity in rats treated with L-NAME. NO-independent soluble guanylate cyclase stimulators may be an alternative treatment for premature ejaculation.68849-5

    Insulin relaxes bladder via PI3K/AKT/eNOS pathway activation in mucosa:Unfolded protein response-dependent insulin resistance as a cause of obesity-associated overactive bladder

    No full text
    We aimed to investigate the role of insulin in the bladder and its relevance for the development of overactive bladder (OAB) in insulin-resistant obese mice. Bladders from male individuals who were involved in multiple organ donations were used. C57BL6/J mice were fed with a high-fat diet for 10 weeks to induce insulin-resistant obesity. Concentration–response curves to insulin were performed in human and mouse isolated mucosa-intact and mucosa-denuded bladders. Cystometric study was performed in terminally anaesthetized mice. Western blot was performed in bladders to detect phosphorylated endothelial NO synthase (eNOS) (Ser1177) and the phosphorylated protein kinase AKT (Ser473), as well as the unfolded protein response (UPR) markers TRIB3, CHOP and ATF4. Insulin (1–100 nm) produced concentration-dependent mouse and human bladder relaxations that were markedly reduced by mucosal removal or inhibition of the PI3K/AKT/eNOS pathway. In mouse bladders, insulin produced a 3.0-fold increase in cGMP levels (P < 0.05) that was prevented by PI3K/AKT/eNOS pathway inhibition. Phosphoinositide 3-kinase (PI3K) inhibition abolished insulin-induced phosphorylation of AKT and eNOS in bladder mucosa. Obese mice showed greater voiding frequency and non-voiding contractions, indicating overactive detrusor smooth muscle. Insulin failed to relax the bladder or to increase cGMP in the obese group. Insulin-stimulated AKT and eNOS phosphorylation in mucosa was also impaired in obese mice. The UPR markers TRIB3, CHOP and ATF4 were increased in the mucosa of obese mice. The UPR inhibitor 4-phenyl butyric acid normalized all the functional and molecular parameters in obese mice. Our data show that insulin relaxes human and mouse bladder via activation of the PI3K/AKT/eNOS pathway in the bladder mucosa. Endoplasmic reticulum stress-dependent insulin resistance in bladder contributes to OAB in obese mice
    corecore