543 research outputs found
Statistical mechanical systems on complete graphs, infinite exchangeability, finite extensions and a discrete finite moment problem
We show that a large collection of statistical mechanical systems with
quadratically represented Hamiltonians on the complete graph can be extended to
infinite exchangeable processes. This extends a known result for the
ferromagnetic Curie--Weiss Ising model and includes as well all ferromagnetic
Curie--Weiss Potts and Curie--Weiss Heisenberg models. By de Finetti's theorem,
this is equivalent to showing that these probability measures can be expressed
as averages of product measures. We provide examples showing that
``ferromagnetism'' is not however in itself sufficient and also study in some
detail the Curie--Weiss Ising model with an additional 3-body interaction.
Finally, we study the question of how much the antiferromagnetic Curie--Weiss
Ising model can be extended. In this direction, we obtain sharp asymptotic
results via a solution to a new moment problem. We also obtain a ``formula''
for the extension which is valid in many cases.Comment: Published at http://dx.doi.org/10.1214/009117906000001033 in the
Annals of Probability (http://www.imstat.org/aop/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Triangle percolation in mean field random graphs -- with PDE
We apply a PDE-based method to deduce the critical time and the size of the
giant component of the ``triangle percolation'' on the Erd\H{o}s-R\'enyi random
graph process investigated by Palla, Der\'enyi and VicsekComment: Summary of the changes made: We have changed a remark about k-clique
percolation in the first paragraph. Two new paragraphs are inserted after
equation (4.4) with two applications of the equation. We have changed the
names of some variables in our formula
Laws relating runs, long runs, and steps in gambler's ruin, with persistence in two strata
Define a certain gambler's ruin process \mathbf{X}_{j}, \mbox{ \ }j\ge 0,
such that the increments
take values and satisfy ,
all , where if , and if .
Here denote persistence parameters and with
. The process starts at and terminates when
. Denote by , , and ,
respectively, the numbers of runs, long runs, and steps in the meander portion
of the gambler's ruin process. Define and let for some . We show exists in an explicit form. We obtain a
companion theorem for the last visit portion of the gambler's ruin.Comment: Presented at 8th International Conference on Lattice Path
Combinatorics, Cal Poly Pomona, Aug., 2015. The 2nd version has been
streamlined, with references added, including reference to a companion
document with details of calculations via Mathematica. The 3rd version has 2
new figures and improved presentatio
Stability and Convergence of Product Formulas for Operator Matrices
We present easy to verify conditions implying stability estimates for
operator matrix splittings which ensure convergence of the associated Trotter,
Strang and weighted product formulas. The results are applied to inhomogeneous
abstract Cauchy problems and to boundary feedback systems.Comment: to appear in Integral Equations and Operator Theory (ISSN: 1420-8989
First results from 2+1 dynamical quark flavors on an anisotropic lattice: light-hadron spectroscopy and setting the strange-quark mass
We present the first light-hadron spectroscopy on a set of
dynamical, anisotropic lattices. A convenient set of coordinates that
parameterize the two-dimensional plane of light and strange-quark masses is
introduced. These coordinates are used to extrapolate data obtained at the
simulated values of the quark masses to the physical light and strange-quark
point. A measurement of the Sommer scale on these ensembles is made, and the
performance of the hybrid Monte Carlo algorithm used for generating the
ensembles is estimated.Comment: 24 pages. Hadron Spectrum Collaboratio
- …