485 research outputs found
Specific targeting of human caspases using designed ankyrin repeat proteins
Caspases play important roles in cell death, differentiation, and proliferation. Due to their high homology, especially of the active site, specific targeting of a particular caspase using substrate analogues is very difficult. Although commercially available small molecules based on peptides are lacking high specificity due to overlapping cleavage motives between different caspases, they are often used as specific tools. We have selected designed ankyrin repeat proteins (DARPins) against human caspases 1-9 and identified high-affinity binders for the targeted caspases, except for caspase 4. Besides previously reported caspase-specific DARPins, we generated novel DARPins (D1.73, D5.15, D6.11, D8.1, D8.4, and D9.2) and confirmed specificity for caspases 1, 5, 6, and 8 using a subset of caspase family members. In addition, we solved the crystal structure of caspase 8 in complex with DARPin D8.4. This binder interacts with non-conserved residues on the large subunit, thereby explaining its specificity. Structural analysis of this and other previously published crystal structures of caspase/DARPin complexes depicts two general binding areas either involving active site forming loops or a surface area laterally at the large subunit of the enzyme. Both surface areas involve non-conserved surface residues of caspase
Handwritten digit recognition by bio-inspired hierarchical networks
The human brain processes information showing learning and prediction
abilities but the underlying neuronal mechanisms still remain unknown.
Recently, many studies prove that neuronal networks are able of both
generalizations and associations of sensory inputs. In this paper, following a
set of neurophysiological evidences, we propose a learning framework with a
strong biological plausibility that mimics prominent functions of cortical
circuitries. We developed the Inductive Conceptual Network (ICN), that is a
hierarchical bio-inspired network, able to learn invariant patterns by
Variable-order Markov Models implemented in its nodes. The outputs of the
top-most node of ICN hierarchy, representing the highest input generalization,
allow for automatic classification of inputs. We found that the ICN clusterized
MNIST images with an error of 5.73% and USPS images with an error of 12.56%
Robust high-dimensional precision matrix estimation
The dependency structure of multivariate data can be analyzed using the
covariance matrix . In many fields the precision matrix
is even more informative. As the sample covariance estimator is singular in
high-dimensions, it cannot be used to obtain a precision matrix estimator. A
popular high-dimensional estimator is the graphical lasso, but it lacks
robustness. We consider the high-dimensional independent contamination model.
Here, even a small percentage of contaminated cells in the data matrix may lead
to a high percentage of contaminated rows. Downweighting entire observations,
which is done by traditional robust procedures, would then results in a loss of
information. In this paper, we formally prove that replacing the sample
covariance matrix in the graphical lasso with an elementwise robust covariance
matrix leads to an elementwise robust, sparse precision matrix estimator
computable in high-dimensions. Examples of such elementwise robust covariance
estimators are given. The final precision matrix estimator is positive
definite, has a high breakdown point under elementwise contamination and can be
computed fast
Selection of tuning parameters in bridge regression models via Bayesian information criterion
We consider the bridge linear regression modeling, which can produce a sparse
or non-sparse model. A crucial point in the model building process is the
selection of adjusted parameters including a regularization parameter and a
tuning parameter in bridge regression models. The choice of the adjusted
parameters can be viewed as a model selection and evaluation problem. We
propose a model selection criterion for evaluating bridge regression models in
terms of Bayesian approach. This selection criterion enables us to select the
adjusted parameters objectively. We investigate the effectiveness of our
proposed modeling strategy through some numerical examples.Comment: 20 pages, 5 figure
Noisy Monte Carlo: Convergence of Markov chains with approximate transition kernels
Monte Carlo algorithms often aim to draw from a distribution by
simulating a Markov chain with transition kernel such that is
invariant under . However, there are many situations for which it is
impractical or impossible to draw from the transition kernel . For instance,
this is the case with massive datasets, where is it prohibitively expensive to
calculate the likelihood and is also the case for intractable likelihood models
arising from, for example, Gibbs random fields, such as those found in spatial
statistics and network analysis. A natural approach in these cases is to
replace by an approximation . Using theory from the stability of
Markov chains we explore a variety of situations where it is possible to
quantify how 'close' the chain given by the transition kernel is to
the chain given by . We apply these results to several examples from spatial
statistics and network analysis.Comment: This version: results extended to non-uniformly ergodic Markov chain
Kernel density classification and boosting: an L2 sub analysis
Kernel density estimation is a commonly used approach to classification. However, most of the theoretical results for kernel methods apply to estimation per se and not necessarily to classification. In this paper we show that when estimating the difference between two densities, the optimal smoothing parameters are increasing functions of the sample size of the complementary group, and we provide a small simluation study which examines the relative performance of kernel density methods when the final goal is classification. A relative newcomer to the classification portfolio is “boosting”, and this paper proposes an algorithm for boosting kernel density classifiers. We note that boosting is closely linked to a previously proposed method of bias reduction in kernel density estimation and indicate how it will enjoy similar properties for classification. We show that boosting kernel classifiers reduces the bias whilst only slightly increasing the variance, with an overall reduction in error. Numerical examples and simulations are used to illustrate the findings, and we also suggest further areas of research
On the combination of omics data for prediction of binary outcomes
Enrichment of predictive models with new biomolecular markers is an important
task in high-dimensional omic applications. Increasingly, clinical studies
include several sets of such omics markers available for each patient,
measuring different levels of biological variation. As a result, one of the
main challenges in predictive research is the integration of different sources
of omic biomarkers for the prediction of health traits. We review several
approaches for the combination of omic markers in the context of binary outcome
prediction, all based on double cross-validation and regularized regression
models. We evaluate their performance in terms of calibration and
discrimination and we compare their performance with respect to single-omic
source predictions. We illustrate the methods through the analysis of two real
datasets. On the one hand, we consider the combination of two fractions of
proteomic mass spectrometry for the calibration of a diagnostic rule for the
detection of early-stage breast cancer. On the other hand, we consider
transcriptomics and metabolomics as predictors of obesity using data from the
Dietary, Lifestyle, and Genetic determinants of Obesity and Metabolic syndrome
(DILGOM) study, a population-based cohort, from Finland
- …