3,537 research outputs found
BCS-BEC crossover in bilayers of cold fermionic polar molecules
We investigate the quantum and thermal phase diagram of fermionic polar molecules loaded in a bilayer trapping potential with perpendicular dipole moment. We use both a BCS-theory approach that is most reliable at weak coupling and a strong-coupling approach that considers the two-body bound dimer states with one molecule in each layer as the relevant degree of freedom. The system ground state is a Bose-Einstein condensate (BEC) of dimer bound states in the low-density limit and a paired superfluid (BCS) state in the high-density limit. At zero temperature, the intralayer repulsion is found to broaden the regime of BCS-BEC crossover and can potentially induce system collapse through the softening of roton excitations. The BCS theory and the strongly coupled dimer picture yield similar predictions for the parameters of the crossover regime. The Berezinskii-Kosterlitz-Thouless transition temperature of the dimer superfluid is also calculated. The crossover can be driven by many-body effects and is strongly affected by the intralayer interaction which was ignored in previous studies
Dielectric function and plasmons in graphene
The electromagnetic response of graphene, expressed by the dielectric
function, and the spectrum of collective excitations are studied as a function
of wave vector and frequency. Our calculation is based on the full band
structure, calculated within the tight-binding approximation. As a result, we
find plasmons whose dispersion is similar to that obtained in the single-valley
approximation by Dirac fermions. In contrast to the latter, however, we find a
stronger damping of the plasmon modes due to inter-band absorption. Our
calculation also reveals effects due to deviations from the linear Dirac
spectrum as we increase the Fermi energy, indicating an anisotropic behavior
with respect to the wave vector of the external electromagnetic field
Casimir interactions in graphene systems
The non-retarded Casimir interaction (van der Waals interaction) between two
free standing graphene sheets as well as between a graphene sheet and a
substrate is determined. An exact analytical expression is given for the
dielectric function of graphene along the imaginary frequency axis within the
random phase approximation for arbitrary frequency, wave vector, and doping.Comment: 4 pages, 4 figure
Dynamical polarization, screening, and plasmons in gapped graphene
The one-loop polarization function of graphene has been calculated at zero
temperature for arbitrary wavevector, frequency, chemical potential (doping),
and band gap. The result is expressed in terms of elementary functions and is
used to find the dispersion of the plasmon mode and the static screening within
the random phase approximation. At long wavelengths the usual square root
behaviour of plasmon spectra for two-dimensional (2D) systems is obtained. The
presence of a small (compared to a chemical potential) gap leads to the
appearance of a new undamped plasmon mode. At greater values of the gap this
mode merges with the long-wavelength one, and vanishes when the Fermi level
enters the gap. The screening of charged impurities at large distances differs
from that in gapless graphene by slower decay of Friedel oscillations (
instead of ), similarly to conventional 2D systems.Comment: 8 pages, 8 figures, v2: to match published versio
Double Quantum Dots in Carbon Nanotubes
We study the two-electron eigenspectrum of a carbon-nanotube double quantum
dot with spin-orbit coupling. Exact calculation are combined with a simple
model to provide an intuitive and accurate description of single-particle and
interaction effects. For symmetric dots and weak magnetic fields, the
two-electron ground state is antisymmetric in the spin-valley degree of freedom
and is not a pure spin-singlet state. When double occupation of one dot is
favored by increasing the detuning between the dots, the Coulomb interaction
causes strong correlation effects realized by higher orbital-level mixing.
Changes in the double-dot configuration affect the relative strength of the
electron-electron interactions and can lead to different ground state
transitions. In particular, they can favor a ferromagnetic ground state both in
spin and valley degrees of freedom. The strong suppression of the energy gap
can cause the disappearance of the Pauli blockade in transport experiments and
thereby can also limit the stability of spin-qubits in quantum information
proposals. Our analysis is generalized to an array of coupled dots which is
expected to exhibit rich many-body behavior.Comment: 14 pages, 11 pages and 1 table. Typos in text and Figs.4 and 6
correcte
Electron-electron interaction and charging effects in graphene quantum dots
We analyze charging effects in graphene quantum dots. Using a simple model,
we show that, when the Fermi level is far from the neutrality point, charging
effects lead to a shift in the electrostatic potential and the dot shows
standard Coulomb blockade features. Near the neutrality point, surface states
are partially occupied and the Coulomb interaction leads to a strongly
correlated ground state which can be approximated by either a Wigner crystal or
a Laughlin like wave function. The existence of strong correlations modify the
transport properties which show non equilibrium effects, similar to those
predicted for tunneling into other strongly correlated systems.Comment: Extended version accepted for publication at Phys. Rev.
Dielectric function of the semiconductor hole gas
We study the dielectric function of the homogeneous hole gas in p-doped
zinc-blende III-V bulk semiconductors within random phase approximation with
the valence band being modeled by Luttinger's Hamiltonian in the spherical
approximation. In the static limit we find a beating of Friedel oscillations
between the two Fermi momenta for heavy and light holes, while at large
frequencies dramatic corrections to the plasmon dispersion occur.Comment: 4 pages, 1 figure included. Version to appear in Europhys. Let
- …