470 research outputs found

    Water bears dominated cryoconite hole ecosystems : densities, habitat preferences and physiological adaptations of Tardigrada on an alpine glacier

    Get PDF
    We investigated the Forni Glacier and the surrounding area in the Alps in terms of habitat preferences, densities, dispersal and desiccation tolerance of glacier tardigrades, which are one of the most common faunal representatives and top consumers in supraglacial ecosystems. To do so, we sampled supraglacial environments (cryoconite holes, debris from ice surface, dirt cones and moraine, mosses from supraglacial stones) and non-glacial habitats (mosses, freshwater sediments and algae), and we installed air traps on the glacier and the nearby area. We found that cryoconite holes on the Forni Glacier are exclusively dominated by one metazoan group of tardigrades, representing one species, Hypsibius klebelsbergi (identified by morphological and molecular approaches). Tardigrades were found in 100% of cryoconite holes and wet supraglacial sediment samples and reached up to 172 ind./ml. Additionally, we found glacier tardigrades in debris from dirt cones and sparsely in supraglacial mosses. Glacier tardigrades were absent from freshwater and terrestrial samples collected from non-glacial habitats. Despite the fact that H. klebelsbergi is a typical aquatic species, we showed it withstands desiccation in sediments, but in low temperatures only. Treatments conducted in higher temperatures and water only showed low or no recovery. We suspect successful dispersal with wind might have taken place only when tardigrades desiccated in sediments and were passively transported by cold wind. Limited ability to withstand high temperatures and desiccation may be potential barriers preventing glacier tardigrades inhabiting new, even apparently suitable high mountain water bodies like temporary rock pools

    Post-Depositional Biodegradation Processes of Pollutants on Glacier Surfaces

    Get PDF
    Glaciers are important fresh-water reservoirs for our planet. Although they are often located at high elevations or in remote areas, glacial ecosystems are not pristine, as many pollutants can undergo long-range atmospheric transport and be deposited on glacier surface, where they can be stored for long periods of time, and then be released into the down-valley ecosystems. Understanding the dynamics of these pollutants in glaciers is therefore important for assessing their environmental fate. To this aim, it is important to study cryoconite holes, small ponds filled with water and with a layer of sediment, the cryoconite, at the bottom, which occur on the surface of most glaciers. Indeed, these environments are hotspots of biodiversity on glacier surface as they host metabolically active bacterial communities that include generalist taxa able to degrade pollutants. In this work, we aim to review the studies that have already investigated pollutant (e.g., chlorpyrifos and polychlorinated-biphenyls (PCBs)) degradation in cryoconite holes and other supraglacial environmental matrices. These studies have revealed that bacteria play a significant role in pollutant degradation in these habitats and can be positively selected in contaminated environments. We will also provide indication for future research in this field

    Mesoscopic phase separation in Nax_xCoO2_2 (0.65x0.750.65\leq x\leq 0.75)

    Full text link
    NMR, EPR and magnetization measurements in Nax_xCoO2_2 for 0.65x0.750.65\leq x\leq 0.75 are presented. While the EPR signal arises from Co4+^{4+} magnetic moments ordering at Tc26T_c\simeq 26 K, 59^{59}Co NMR signal originates from cobalt nuclei in metallic regions with no long range magnetic order and characterized by a generalized susceptibility typical of strongly correlated metallic systems. This phase separation in metallic and magnetic insulating regions is argued to occur below T(x)T^*(x) (220270220 - 270 K). Above TT^* an anomalous decrease in the intensity of the EPR signal is observed and associated with the delocalization of the electrons which for T<TT<T^* were localized on Co4+^{4+} dz2d_{z^2} orbitals. It is pointed out that the in-plane antiferromagnetic coupling JTJ\ll T^* cannot be the driving force for the phase separation.Comment: 14 figure

    Nematodes and rotifers on two Alpine debris-covered glaciers

    Get PDF
    Debris-covered glaciers (DCGs) are glaciers whose ablation area is mostly covered by a continuous layer of debris, and are considered to be among the continental glacierized environments richest in life. DCG colonization by microorganisms, plants and animals, has been investigated in a few studies, while the meiofauna (metazoans smaller than 2\uc2\ua0mm) of these environments has been neglected so far. In this study, we analyzed nematode and rotifer fauna on the two largest debris-covered glaciers of the Italian Alps: the Miage Glacier and the Belvedere Glacier. In total, we collected 38 debris samples on the glaciers in July and September 2009. All the rotifers we found belonged to the bdelloid Adineta vaga (Davis, 1873). Nematodes belonged to 19 species. Miage Glacier hosted a richer and more diverse nematode fauna than the Belvedere. The dominant genus was Plectus Bastian, 1865, a common genus in habitats at high latitude and altitude. Analysis of the feeding type of nematodes highlighted that bacterivores were dominant on Miage Glacier, while bacterivores and herbivores were more widespread on Belvedere Glacier. Predator nematodes were absent. Analysis of the food-web structure indicated that nematode assemblages on both glaciers were typical of environments with depleted food availability, probably resulting from instability of the glacier surface and the short exposure of sediments, preventing the evolution of true soil and enrichment in organic matter of the debris. The scarcity of bacterial primary producers suggests that deposition of allochthonous organic matter is the principal organic carbon source in this environment

    Poorly differentiated clusters (PDC) in colorectal cancer: Does their localization in tumor matter?

    Get PDF
    Poorly differentiated clusters (PDC) are aggregates of at least five neoplastic cells lacking evidence of glandular differentiation. By definition, they can be present at the invasive front (peripheral PDC or pPDC) and within the tumor stroma (central PDC or cPDC). In colorectal cancer (CRC), PDC are considered adverse prognosticators and seem to reflect epithelial mesenchymal transition (EMT). In this study, we have investigated the immuno-expression of two EMT-related proteins, E-cadherin and β-catenin, in PDC of primary CRCs and matched liver metastases. pPDC always showed nuclear β-catenin staining and diffusely reduced/absence of E-cadherin expression as opposed cPDC which showed nuclear β-catenin immunoreactivity and E-cadherin expression in about 50% of cases. In addition, the pattern of β-catenin and E-cadherin expression differed between PDC and the main tumor, and between primary CRC and liver metastasis (LM), in a percentage of cases. A discordant pattern of β-catenin and E-cadherin expression between pPDC and cPDC, between main tumor and cPDC, and between primary CRC and LM, confirms that EMT is a dynamic and reversible process in CRC. On the overall, this suggests that pPDC and cPDC are biologically different. We may advocate that PDC develop at the tumor center (cPDC) and then some of them migrate towards the tumor periphery while progressively completing EMT process (pPDC). Based on these results, PDC presence and counting may have different prognostic relevance if the assessment is done at the invasive front of the tumor or in the intratumor stroma

    Emergence of a HER2-amplified clone during disease progression in an ALK-rearranged NSCLC patient treated with ALK-inhibitors: A case report

    Get PDF
    Anaplastic lymphoma kinase tyrosine kinase inhibitors (ALK-TKIs) are the standard treatment for advanced ALK-positive non-small cell lung cancer (NSCLC) allowing survivals up to 5 years. However, duration of responses is limited by the almost certain occurrence of drug resistance. Here, we report a case of a never smoker, 59-year-old female with metastatic ALK-positive adenocarcinoma, solid and signet ring patterns, who developed resistance to alectinib, a second-generation ALK-TKI, mediated by HER2 gene amplification. The patient received 22 months of crizotinib as first-line and subsequently 1-year of alectinib therapy. A study of resistance mechanism was performed with next generation sequencing (NGS) on tissue re-biopsy. A HER2-amplified emerging clone was identified by NGS in a liver metastasis and confirmed by fluorescent in situ hybridization (FISH) analysis. The resistant clone was detectable 2 months before disease progression in plasma cell-free DNA (cfDNA) using digital droplet PCR (ddPCR) copy number variation (CNV) assay and it was retrospectively traced in rare cells of the lung primary by FISH. To our best knowledge, this is first evidence of HER2 gene amplification as a resistance mechanism to ALK-TKI in a NSCLC. Future strategies against oncogene-addicted NSCLC might benefit of combined drug treatments, such as ALK and HER2 inhibition

    Macroeconomia dos estados e matriz interestadual de insumo-produto

    Get PDF
    This paper presents the methodology and the results ofthe estimation of a system of state accounts for Brazil. Using the available information on GDP, government revenues and expenditures, international and interstate trade for the states, estimates for consumption and private investment were produced. The system was calibrated for the year 1996. Given the state accounts and the national input-output table, an eight-sector interstate input-output table was prepared

    Monitoring cfDNA in plasma and in other liquid biopsies of advanced EGFR mutated NSCLC patients: A pilot study and a review of the literature

    Get PDF
    In order to study alternatives at the tissue biopsy to study EGFR status in NSCLC patients, we evaluated three different liquid biopsy platforms (plasma, urine and exhaled breath condensate, EBC). We also reviewed the literature of the cfDNA biological sources other than plasma and compared our results with it about the sensitivity to EGFR mutation determination. Twenty-two EGFR T790M-mutated NSCLC patients in progression to first-line treatment were enrolled and candidate to osimertinib. Plasma, urine and EBC samples were collected at baseline and every two months until progression. Molecular analysis of cfDNA was performed by ddPCR and compared to tissue results. At progression NGS analysis was performed. The EGFR activating mutation detection reached a sensitivity of 58 and 11% and for the T790M mutation of 45 and 10%, in plasma and urine samples, respectively. Any DNA content was recovered from EBC samples. Considering the plasma monitoring study, the worst survival was associated with positive shedding status; both plasma and urine molecular progression anticipated the radiological worsening. Our results confirmed the role of plasma liquid biopsy in testing EGFR mutational status, but unfortunately, did not evidence any improvement from the combination with alternative sources, as urine and EBC
    corecore