6,626 research outputs found

    Comments on "Wall-plug (AC) power consumption of a very high energy e+/e- storage ring collider" by Marc Ross

    Full text link
    The paper arXiv:1308.0735 questions some of the technical assumptions made by the TLEP Steering Group when estimating in arXiv:1305.6498 the power requirement for the very high energy e+e- storage ring collider TLEP. We show that our assumptions are based solidly on CERN experience with LEP and the LHC, as well accelerators elsewhere, and confirm our earlier baseline estimate of the TLEP power consumption.Comment: 6 page

    Dose Planning Evaluation of Intensity-Modulated Proton Therapy (IMPT) Technique Based on In-House Dynamic Thorax Phantom

    Get PDF
    One of the drawbacks of the Intensity Modulated Radiation Therapy (IMRT) technique is that the absorbed dose in healthy tissue is relatively high. Proton beam has characteristics that can compensate for these drawbacks. The Bragg peak characteristic of a proton beam allows the administration of high radiation doses to the target organ only. Non-Small Cell Lung Cancer (NSCLC) cases are located in the vicinity of many vital organs, so radiation doses that exceed a certain limit will have a significant impact on these organs. Proton is a heavy particle that exhibits interaction patterns with tissue heterogeneity that differ from that of photon. This study aims to determine the distribution of proton beam planning doses in the NSCLC cases with the Intensity Modulated Proton Therapy (IMPT) technique and compare its effectiveness with the IMRT technique. Treatment planning was done by using TPS Eclipse on the water phantom and on the in-house thorax dynamic phantom. The water phantom planning parameters used are one field at 0° and three fields at 45°, 135°, and 225°. In this study, a single, sum, and multiple field techniques on the in-house thorax dynamic phantom were used. The evaluation was performed by calculating Conformity Index (CI), Homogeneity Index (HI), and Gradient Index (GI) parameters for each treatment planning. As a result, a bit of difference in the CI the HI values are shown between IMPT and IMRT planning. The GI values of IMPT planning are in the range between 4.15-4.53, while the GI value of IMRT is 7.89. The histogram results of the planar dose distribution show that the IMPT treatment planning provides fewer off-target organ doses than the IMRT planning. Evaluation was also carried out on the    IMPT treatment planning of target organs in five areas of interest and four OAR positions. The evaluation results were then compared with the IMRT measurement data. As a result, the value of the point doses at the target organ      did not differ significantly. However, the absorbed dose with the IMPT technique at four OAR positions is nearly zero, which had a large difference compared to the IMRT technique

    Numerical investigation to examine two methods of passive control in urban street canyon using CFD: Comparison between crossing under building and solid barriers lbw

    Get PDF
    Different passive control methods are discussed in this paper with the purpose of improved the quality of the air and dispersed the pollution outside the urban canyon road. Numerical investigation model is used in this paper, to examine two methods of passive control within a crossing under building and Low Boundary Wall in center of road for reducing air pollution concentration using Reynolds-averaged Navier–Stokes  equations and the k-Epsilon turbulence model as close of the equation system. The results of this investigation show that a low boundary wall located at the central median of the street canyon creates a significant reduction in pedestrian exposure, relative to the same canyon with no wall. The magnitude of the exposure reduction was also found to vary according to the numbers of the crossing under building in the street canyon geometry. The values of the concentration normalized is  decreased in the critical region were located in the centerline of the street canyon.Keywords: Passive Methods, Barriers, Street Canyon, Pollutant  Dispersion, Numerical Simulation

    Expression of 72-kDa Gelatinase (MMP-2), Collagenase (MMP-1), and Tissue Metalloproteinase Inhibitor (TIMP) in Primary Pig Skin Fibroblast Cultures Derived from Radiation-Induced Skin Fibrosis

    Get PDF
    In addition to producing matrix degradation for normal tissue remodeling and repair, matrix metalloproteinases (MMPs) are also involved in various pathologic processes. MMPs and the tissue inhibitor of MMPs (TIMP) were investigated in primary cultures of pig fibroblasts from radiation-induced dermal fibrosis and compared to normal dermal fibroblasts. The free gelatinolytic, collagenolytic, and caseinolytic activities secreted into the culture medium were evaluated against specific 3H denatured collagen type I, native helical collagen, and casein α, respectively. The 72- and 68-kilodalton (kDa) forms of type IV collagenase were investigated by protease zymography and quantified by semi-automated image analysis. Transcription of the interstitial collagenase (MMP-1) and TIMP genes was studied by Northern hybridization analysis. Results revealed that in fibrotic fibroblasts, the amount of MMP-1 mRNA was greatly reduced to undetectable levels whereas the amount of TIMP mRNA was increased fourfold compared to controls. Functional assays using specific 3H substrates demonstrated an overall decrease in free MMP activities. Concomitantly, catheptic collagenolytic activity decreased in fibrotic fibroblast extracts compared to controls. These results indicate that in addition to accumulating large amounts of collagen, proteoglycans, and fibronectin, pig fibroblasts from radiation-induced dermal fibrosis also promote connective tissue matrix formation by repressing MMP-1 and stimulating TIMP expression at the transcriptional level, and by reducing overall free MMP and catheptic collagenolytic activities at the post-transcriptional level. In contrast, enzymography assays and automated image analysis demonstrated no significant change in the 72-kDa type IV collagenase activity of fibrotic pig skin fibroblasts. This opposite regulation of 72-kDa collagenase type IV to that of MMP-1 seems to indicate that it has a specific role in remodeling the extracellular matrix during wound healing, fibrogenesis, and angiogenesis

    Epigenetic and phenotypic variability in populaitons of Schistosoma mansoni - a possible kick-off for adaptative host/parasite evolution

    Get PDF
    International audienceEpigenetics, the science of heritable but modifiable information, is now a well-accepted component of many research fields. Nevertheless, epigenetics has not yet found broad appreciation in one of the most exciting fields of biology: the comprehension of evolution. This is surprising, since the reason for the existence of this alternative information-transmitting system lies certainly in the evolutionary advantage it provides. Theoretical considerations support a model in which epigenetic mechanisms allow for increasing phenotypic variability and permit populations to explore the adaptive landscape without modifications of the genotype. The data presented here support the view that modulating the epigenotype of the human bloodfluke Schistosoma mansoni by treatment of larvae with histone deacetylase inhibitor leads indeed to an increase of phenotypic variability. It is therefore conceivable that environmentally induced changes in the epigenotype release new phenotypes on which selection can act and that this process is the first step in adaptive evolution

    Network-mediated encoding of circadian time: The suprachiasmatic nucleus (SCN) from genes to neurons to circuits, and back

    Get PDF
    The transcriptional architecture of intracellular circadian clocks is similar across phyla, but in mammals interneuronal mechanisms confer a higher level of circadian integration. The suprachiasmatic nucleus (SCN) is a unique model to study these mechanisms, as it operates as a ∌24 h clock not only in the living animal, but also when isolated in culture. This “clock in a dish” can be used to address fundamental questions, such as how intraneuronal mechanisms are translated by SCN neurons into circuit-level emergent properties and how the circuit decodes, and responds to, light input. This review addresses recent developments in understanding the relationship between electrical activity, [Ca(2+)](i), and intracellular clocks. Furthermore, optogenetic and chemogenetic approaches to investigate the distinct roles of neurons and glial cells in circuit encoding of circadian time will be discussed, as well as the epigenetic and circuit-level mechanisms that enable the SCN to translate light input into coherent daily rhythms
    • 

    corecore