1,147 research outputs found

    Linear Precoding for Broadcast Channels with Confidential Messages under Transmit-Side Channel Correlation

    Full text link
    In this paper, we analyze the performance of regularized channel inversion (RCI) precoding in multiple-input single-output (MISO) broadcast channels with confidential messages under transmit-side channel correlation. We derive a deterministic equivalent for the achievable per-user secrecy rate which is almost surely exact as the number of transmit antennas and the number of users grow to infinity in a fixed ratio, and we determine the optimal regularization parameter that maximizes the secrecy rate. Furthermore, we obtain deterministic equivalents for the secrecy rates achievable by: (i) zero forcing precoding and (ii) single user beamforming. The accuracy of our analysis is validated by simulations of finite-size systems.Comment: to appear IEEE Communications Letter

    Applications of the normal-incidence rotating-sample ellipsometer to high- and low-spatial-frequency gratings

    Get PDF
    The normal-incidence rotating-sample ellipsometer is an instrument that can be used to characterize grating surfaces from the measured ratio ρof complex reflection coefficients ry/rx of light polarized perpendicular and parallel to the grating groove direction. Experimental results at different wavelengths for different gratings with spatial frequencies from 150 to 5880 grooves/mm are presented. The groove depth of the 5880-grooves/mm gold-coated grating can be estimated from the measured ρ and rigorous grating theory

    Determination of the refractive index and thickness of transparent pellicles by use of the polarization-independent absentee-layer condition

    Get PDF
    The refractive index and the thickness of a transparent pellicle are determined when the pellicle is placed between two vertical crossed polarizers and rotated in the horizontal plane. The transmission axes of the polarizers are neither parallel nor perpendicular to the plane of incidence. The light transmitted through the crossed polarizers reaches a minimum when the pellicle satisfies the absentee-layer condition. The refractive index and the film thickness are obtained from the pellicle orientation angles under such a condition

    The language of Einstein spoken by optical instruments

    Get PDF
    Einstein had to learn the mathematics of Lorentz transformations in order to complete his covariant formulation of Maxwell's equations. The mathematics of Lorentz transformations, called the Lorentz group, continues playing its important role in optical sciences. It is the basic mathematical language for coherent and squeezed states. It is noted that the six-parameter Lorentz group can be represented by two-by-two matrices. Since the beam transfer matrices in ray optics is largely based on two-by-two matrices or ABCDABCD matrices, the Lorentz group is bound to be the basic language for ray optics, including polarization optics, interferometers, lens optics, multilayer optics, and the Poincar\'e sphere. Because the group of Lorentz transformations and ray optics are based on the same two-by-two matrix formalism, ray optics can perform mathematical operations which correspond to transformations in special relativity. It is shown, in particular, that one-lens optics provides a mathematical basis for unifying the internal space-time symmetries of massive and massless particles in the Lorentz-covariant world.Comment: LaTex 8 pages, presented at the 10th International Conference on Quantum Optics (Minsk, Belarus, May-June 2004), to be published in the proceeding

    Single-layer-coated surfaces with linearized reflectance versus angle of incidence: application to passive and active silicon rotation sensors

    Get PDF
    A transparent or absorbing substrate can be coated with a transparent thin film to produce a linear reflectanceversus- angle-of-incidence response over a certain range of angles. Linearization at and near normal incidence is a special case that leads to a maximally flat response for p-polarized, s-polarized, or unpolarized light. For midrange and high-range linearization with moderate and high slopes, respectively, the best results are obtained when the incident light is s polarized. Application to a Si substrate that is coated with a SiO2 film leads to novel passive and active reflection rotation sensors. Experimental results and an error analysis of this rotation sensor are presented

    Single-layer-coated surfaces with linearized reflectance versus angle of incidence: application to passive and active silicon rotation sensors

    Get PDF
    A transparent or absorbing substrate can be coated with a transparent thin film to produce a linear reflectanceversus- angle-of-incidence response over a certain range of angles. Linearization at and near normal incidence is a special case that leads to a maximally flat response for p-polarized, s-polarized, or unpolarized light. For midrange and high-range linearization with moderate and high slopes, respectively, the best results are obtained when the incident light is s polarized. Application to a Si substrate that is coated with a SiO2 film leads to novel passive and active reflection rotation sensors. Experimental results and an error analysis of this rotation sensor are presented

    Stellar Image Interpretation System Using Artificial Neural Networks:

    Get PDF
    A supervised Artificial Neural Network (ANN) based system is being developed employing the Bi-polar function for identifying stellar images in CCD frames. It is based on feed-forward artificial neural networks with error back-propagation learning. It has been coded in C language. The learning process was performed on a 341 input pattern set, while a similar set was used for testing. The present approach has been applied on a CCD frame of the open star cluster M67. The results obtained have been discussed and compared with those derived in our previous work employing the Uni-polar function and by a package known in the astronomical community (DAOPHOT-II). Full agreement was found between the present approach, that of Elnagahy et al, and the standard astronomical data for the cluster. It has been shown that the developed technique resembles that of the Uni-Polar function, possessing a simple, much faster yet reliable approach. Moreover, neither prior knowledge on, nor initial data from, the frame to be analysed is required, as it is for DAOPHOT-II.
    corecore