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Single-layer-coated surfaces with linearized
reflectance versus angle of incidence: application

to passive and active silicon rotation sensors
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A transparent or absorbing substrate can be coated with a transparent thin film to produce a linear reflectance-
versus-angle-of-incidence response over a certain range of angles. Linearization at and near normal incidence
is a special case that leads to a maximally flat response for p-polarized, s-polarized, or unpolarized light.
For midrange and high-range linearization with moderate and high slopes, respectively, the best results are
obtained when the incident light is s polarized. Application to a Si substrate that is coated with a SiO2 film
leads to novel passive and active reflection rotation sensors. Experimental results and an error analysis of
this rotation sensor are presented.

1. INTRODUCTION
In this paper it is shown that a transparent or absorbing
(semiconductor or metal) substrate can be coated with a
transparent thin film of the proper refractive index and
thickness such that the intensity (or power) reflectance R

for incident p-polarized, s-polarized, or unpolarized light
is a linear function of the angle of incidence f over a
certain range. Such a surface with linearized angular
reflectance response is the basis for a new rotation sensor.
Although good results are obtained with one homogeneous
film, it should be apparent that multilayer and graded-
index films offer additional flexibility that may be used,
e.g., to broaden the range of linearity or to achieve a linear
response at more than one wavelength.

As a basis for further discussion, we start with R as
a function of f for an uncoated optically isotropic sub-
strate with complex refractive index N2 ­ n2 2 jk2. As
an example, Fig. 1 shows R versus f for light reflection
in air by the plane surface of a bare Si substrate with
N2 ­ 3.85 2 j0.02 at a 633-nm wavelength.1 The re-
flectance Rs for s-polarized light increases monotonically
with f between normal sf ­ 0d and grazing sf ­ 90±d
incidence, whereas Rp experiences a minimum at the
pseudo-Brewster angle.2 The average reflectance Ru for
incident unpolarized light, shown by the dashed curve,
experiences a shallow minimum at oblique incidence.

Again, our objective is to coat the substrate with a
transparent thin film of refractive index n1 and thickness
d such that R is a linear function of f over a certain
range. It is convenient to divide the full range of f into
three ranges: an initial range I near normal incidence
s0 # f , 30±d, a midrange II s30± , f , 70±d, and a high
range III s70± , f , 90±d.

Linearization in range I leads to a maximally flat re-
sponse (MFR) at and near normal incidence. First we
note that R is an even function of f:

Rs2fd ­ Rsfd , (1)

so that all the odd-numbered derivatives are zero at f ­ 0.

(Changing the sign of f is permitted mathematically and
may be thought of physically as changing the direction of
incidence from one side of the surface normal to the other
in a given plane of incidence.) Therefore a Taylor-series
expansion of R around f ­ 0 takes the form

Rsfd ­ Rs0d 1 sf2y2!dRs2ds0d 1 sf4y4!dRs4ds0d 1 . . . , (2)

where Rsnd is the nth derivative of R with respect to f.
The MFR is realized when

Rs2ds0d ­ Rs4ds0d ­ 0 (3)

and is described by the Taylor series

Rsfd ­ Rs0d 1 sf6y6!dRs6ds0d 1 . . . . (4)

We further appreciate that Eq. (4) represents a truly flat
response in range I by noting that the coefficient of the
sixth derivative f6y6! ­ 2.2 3 1025 for f ­ 0.5 rad. The
MFR is illustrated by several examples in Section 2.

Linearization in ranges II and III is based on writing a
Taylor-series expansion of Rsfd around a certain operat-
ing (or bias) angle of incidence f0:

Rsfd ­ Rsf0d 1 sf 2 f0dRs1dsf0d 1 fsf 2 f0d2y2!gRs2dsf0d

1 fsf 2 f0d3y3!gRs3dsf0d 1 . . . (5)

and requiring that

Rs2dsf0d ­ Rs3dsf0d ­ 0 . (6)

The function of the transparent-layer coating is to force
the conditions represented by Eqs. (6) [or Eqs. (3) for the
MFR] to be satisfied. Specific examples are presented in
Section 3.

The equations of light reflection by coated and uncoated
surfaces are readily available elsewhere.3 – 5 All deriva-
tives were determined analytically; the expressions are
too lengthy to be listed here.
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Fig. 1. Reflectance R for p-polarized, s-polarized, and unpolar-
ized light as a function of the angle of incidence f for an uncoated
Si substrate with complex index of refraction N2 ­ 3.85 2 j0.02
at a 633-nm wavelength. The reflectance is linearized in any
one of the ranges marked I, II, and III with a transparent-layer
coating.

Fig. 2. Normalized response Fpsfd for coated and uncoated Si
for incident p-polarized light of 633-nm wavelength. The coat-
ing, a SiO2 film of refractive index 1.460 and thickness 71.5 nm,
produces a maximally flat reflectance in range I s0 , f , 30±d.

2. LINEARIZATION AT AND
NEAR NORMAL INCIDENCE (RANGE I):
MAXIMALLY FLAT RESPONSE
It is convenient to work with the normalized response
function

Fnsfd ­ RnsfdyRns0d , (7)

where n ­ p, s, u represent p-polarized, s-polarized, and
unpolarized light, respectively. For a Si substrate and
p-polarized incident light of 633-nm wavelength, Eqs. (3)
are satisfied with a film of refractive index n1 ­ 1.460
(fortuitously that of SiO2) and thickness d ­ 71.49 nm.
The resulting MFR in range I and beyond is shown in
Fig. 2, along with that of a bare Si substrate; in this case
Rs0d ­ 16.85%.

For the s polarization the MFR is achieved with a film
of refractive index n1 ­ 1.858 (which corresponds to sili-

con nitride or oxynitride6) and thickness d ­ 123.68 nm.
The functions Fssfd are shown in Fig. 3 for the coated
and uncoated Si substrates. It is apparent that an ex-
cellent MFR is attained in range I s0 , f , 30±d with
a single-layer coating; the constant reflectance level
Rssfd ø Rs0d ­ 18.54%.

For incident unpolarized light, Eqs. (3) are satisfied
with a film with n1 ­ 3.795 (which differs slightly from
that of Si) and d ­ 37.11 nm. This coating, which is not
practical, provides only a marginal improvement (disap-
pearance of the shallow minimum in Fig. 1). In this case
Rs0d ­ 33.39%, which differs slightly from that of bare
Si. That uncoated Si provides a nearly MFR for inci-
dent unpolarized light is consistent with previously pub-
lished work.7

The same procedure has been applied to other sub-
strates. For example, Fig. 4 shows Fs for an Al substrate
(N2 ­ 1.5 2 j7.6 at a 633-nm wavelength8) with and with-
out a single-layer coating (n1 ­ 2.138, d ­ 96.20 nm) that
achieves a MFR at and near normal incidence. Rssfd ø
Rss0d ­ 84.95% for the coated surface for 0 , f , 30±.

Surfaces with a MFR can be useful as angle-insensitive
reflectance standards and in scanning applications that
may require beam deflection without a change of the
reflected light intensity.

3. LINEARIZATION IN THE MIDRANGE
AND HIGH RANGE OF INCIDENCE ANGLES
Coatings that achieve linearity in ranges II and III by sat-
isfying Eqs. (6) have been found for different substrates
including Si, Al, ZnS, and SiO2 (glass) at 633 nm and at
other (laser) wavelengths. For all the cases considered,
solutions are readily obtained for incident s-polarized
light. However, no solutions could be found for the p
polarization, and only occasional solutions are found for
unpolarized light.

Equations (6) [or Eqs. (3)] are simultaneous nonlinear
equations that are solved by numerical iteration. In the

Fig. 3. Normalized response Fssfd for coated and uncoated
Si for incident s-polarized light of 633-nm wavelength. The
coating, an oxynitride film of refractive index 1.858 and thickness
123.7 nm, produces a maximally flat reflectance in range I
s0 , f , 30±d.
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Fig. 4. Normalized response Fssfd for coated and uncoated Al
for incident s-polarized light of 633-nm wavelength. The coat-
ing, a transparent film of refractive index 2.138 and thick-
ness 96.2 nm, produces a maximally flat reflectance in range I
s0 , f , 30±d.

Fig. 5. Linearization of the reflectance Rs of Si for incident
s-polarized light of 633-nm wavelength around the angle
f0 ­ 45± with a dense MgF2 film of refractive index 1.394
and thickness 235.2 nm.

present case, one can assign a value to f0 and solve
Eqs. (6) for the film’s refractive index n1 and thickness d.
Alternatively, one can assign a value to n1 and solve
Eqs. (6) for f0 and d. The latter approach is important
because it is easier to adjust the angle of incidence than
it is to adjust the film’s refractive index.

As an example of linearization in range II we consider
a Si substrate, incident s-polarized light of 633-nm wave-
length, and the convenient operating angle of incidence
f0 ­ 45±. Solving Eqs. (6) for the parameters of the
transparent film gives n1 ­ 1.394 (which corresponds to
dense MgF2)9 and d ­ 235.2 nm. Figure 5 shows the re-
sulting linearized Rs-versus-f curve around f0 ­ 45± at
which Rs ­ 44.43% and the slope of the linear response is
0.366% deg21. Figures 6(a), 6(b), and 6(c), respectively,
show the first, second, and third angle-of-incidence deriva-
tives Rs

0, Rs
00, and Rs

000 as functions of f for this coated-

Si surface. Notice the plateau of constant slope Rs
0 in

Fig. 6(a) and the zeros of Rs
00 and Rs

000 at f0 ­ 45± in
Figs. 6(b) and 6(c), as required by design.

Fig. 6. (a) First derivative Rs
0, (b) second derivative Rs

00, and
(c) third derivative Rs

000 as functions of angle of incidence f for
the linearized reflectance response shown in Fig. 5.
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Fig. 7. Linearization of the reflectance Rs of Si for incident
s-polarized light of 633-nm wavelength around the angle f0 ­
62.89± with a SiO2 film of refractive index 1.46 and thickness
311.4 nm.

Fig. 8. Linearization of the reflectance Rs of Si for incident
s-polarized light of 633-nm wavelength around the angle f0 ­
83.48± with a SiO2 film of refractive index 1.46 and thickness
1002.0 nm.

Another important example is that of a SiO2 film (with
refractive index 1.46) upon a Si substrate at the same
633-nm wavelength. In this case Eqs. (6) are solved for
the operating angle f0 ­ 62.888± and the film thickness

d ­ 311.4 nm. The corresponding linearized Rssfd re-
sponse, which appears in Fig. 7, has a higher slope of
1.47% deg21 at f0. The linear range (LR) is defined as
that range of f over which the actual response deviates
from its linear approximation (the tangent to the curve
at f0) by no more than 1%. For the present example
the LR is given by 55.7± , f , 70.3±. This particular
SiO2 –Si design is the subject of an error analysis given
in Section 4. It is also the design that we adopt to imple-
ment an optical rotation sensor for measuring the angular
speed and acceleration of a rotating shaft as described in
Section 5.

To obtain a much higher slope (at the expense of a re-
duction in the LR) one has to linearize in range III. An
example of this uses the same SiO2 –Si film–substrate
system but with a higher oxide thickness d ­ 1002.0 nm
and a higher operating angle f0 ­ 83.484± at the
same 633-nm wavelength. The reflectance curve Rssfd
appears in Fig. 8. The linear response occurs at high
angles (LR 81.1± , f , 85.6±) with a slope of 6.75% deg21.
It is interesting to note that Rs ø 0 at 72±, which indi-
cates that this SiO2 –Si system acts as an accidental
polarizer.

For ease of reference, the results cited above are sum-
marized in Table 1. This table also summarizes other re-
sults that we obtained for linearization of the Rs-versus-f
curve by using Al, ZnS, and SiO2 (glass) substrates at a
633-nm wavelength.

For the glass substrate sN2 ­ 1.5d the low refractive
index of the film, n1 ­ 1.127, does not correspond to that of
any known thin solid film but can be realized by creation
of a two-dimensional subwavelength-structured surface
on glass, as is now well known in diffractive optics.10

Of the results included in Table 1 the broadest LR
s48.9± , f , 81.3±d is obtained for an Al substrate that
is coated with a transparent film of refractive index 2.20
[e.g., low-density ZnS (Ref. 9)] and of 160.1-nm thick-
ness. The resulting linearized response Rssfd is shown
in Fig. 9; it has a slope of 0.16% deg21 at f0 ­ 62.385±.
This slope is small because of the high reflectance of Al
at normal incidence.

Finally, we show an example of the linearization of
reflectance for incident unpolarized light Ru (Fig. 10),
using a Si substrate at 633-nm wavelength. With f0 ­
65±, the required transparent coating has a refractive
index n1 ­ 1.381 (MgF2) and a thickness d ­ 384.23 nm.
In this case Rusf0d ­ 30.27% and the slope Ru

0sf0d ­
1.11% deg21.

Table 1. Coatings for Linearized-Reflectance-versus-Angle Response for Incident s-Polarized Lighta

Substrate Ns n1 f0 sdegd d snmd Rs0 s%d Rs0
0 s%d LR s61%d

Si 3.85– j0.02 1.394 45.000 235.17 44.43 0.19267 38.25–50.91
Si 3.85– j0.02 1.480 65.000 312.79 57.52 0.90922 57.89–72.50
Si 3.85– j0.02 1.46 62.888 311.36 56.60 0.84255 55.70–70.30
Si 3.85– j0.02 1.46 83.484 1002.00 53.74 3.86667 81.15–85.55
Al 1.5– j7.6 2.20 62.385 160.14 95.43 0.09417 48.90–81.25
Al 1.5– j7.6 1.503 45.000 219.07 93.39 0.05688 35.53–54.35
ZnS 2.35 1.46 73.699 638.50 47.66 1.70587 69.30–78.50
SiO2 1.5 1.127 64.970 464.05 22.70 0.63914 61.00–68.51

aThe wavelength of incident monochromatic light is taken to be 633 nm, Ns is the refractive index of the substrate, n1 is that of the film, f0 is the
angle of incidence for which the second and third derivatives are zero, d is the film thickness, Rs0 is the intensity reflectance at the design angle, Rs0

0

is first derivative of reflectance at f0, and LR is the linear range in degrees.
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Fig. 9. Linearization of the reflectance Rs of Al for incident
s-polarized light of 633-nm wavelength around the angle
f0 ­ 62.38± with a low-density ZnS film of refractive index
2.20 and thickness 160.1 nm. Notice the broad linear range
(with a modest slope of 0.16% deg21).

Fig. 10. Linearization of the reflectance Ru of Si for incident
unpolarized light of 633-nm wavelength around the angle
f0 ­ 65± with a MgF2 film of refractive index 1.381 and thickness
384.2 nm.

4. ERROR ANALYSIS FOR
A SiO2 –Si SURFACE WITH
LINEARIZED REFLECTANCE
Now we consider the effect of introducing small errors
s65%d of the film’s refractive index or thickness on the
linearized Rssfd response. The starting design is that
which uses a 311.4-nm SiO2 film upon Si at a 633-nm
wavelength. Figure 11 shows the shifted response
caused by refractive-index errors, and Fig. 12 shows
those caused by film-thickness errors. In both cases the
middle curve represents the design curve in the absence
of errors. It is evident that the film’s refractive-index
and thickness errors change the slope and LR but that
reasonably good linearity is retained.

Figure 13 shows the effect of changing the direction
of linear polarization of incident light by 65± from that of
the normal to the plane of incidence (i.e., the pure s state).

Fortunately, the effect on the linearized Rssfd response
is negligible.

5. REFLECTION ROTATION SENSOR
BASED ON A SiO2 –Si SURFACE WITH
LINEARIZED REFLECTANCE FOR
INCIDENT s-POLARIZED LIGHT
The principle of operation of this sensor is described with
reference to Fig. 14. Sensor element S with linearized
reflectance is mounted upon a rotating shaft such that
the (vertical) axis of rotation is in the plane of the sen-
sor surface. Incident light from a He–Ne laser (633-nm
wavelength) is (vertically) polarized perpendicular to the
(horizontal) plane of incidence. Lens L is placed in the
reflected beam to image the point of reflection onto a lin-
ear photodetector D (a silicon photodiode). The 633-nm
narrow-band spectral filter F permits measurements to
be done in ambient light. The revolving reflected beam
is intercepted by the lens and is focused onto the detector
only over a finite range of angles f0 6 b, where f0 ø 63±

Fig. 11. Effect of 65% film refractive-index error on the lin-
earized s-reflectance response of a Si substrate coated with a
SiO2 film of thickness 311.4 nm at a 633-nm wavelength.

Fig. 12. Effect of 65% film-thickness error on the linearized
s-reflectance response of a Si substrate coated with a SiO2 film
of thickness 311.4 nm at a 633-nm wavelength.
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Fig. 13. Effect of 65± shift u of the orientation of the incident
electric field vector from the s direction on the linearized re-
flectance response of a Si substrate coated with a SiO2 film of
thickness 311.4 nm at a 633-nm wavelength.

Fig. 14. (a) Experimental setup for measuring the angular
speed and acceleration of a rotating shaft by a reflective sen-
sor with linearized reflectance for incident s-polarized light.
L, focusing lens; F, narrow-band filter to isolate the 633-nm
reflected radiation; D, linear photodiode. (b) The linear re-
flectance response.

and b ø 7±. In our experiment we used a Si surface with
a 311-nm SiO2 coating, which has a linear response Rssfd
over the indicated range of angles.

The detected signal as a function of time t is given by

istd ­ CI0sRs , (8)

where I0s is the intensity (or power) of incident s-polarized
light (assumed to be constant) and C is a constant that
is characteristic of the detector and also accounts for the
insertion loss that is due to lens L and filter F. The rate
of change of the signal is given by

diydt ­ CI0ssdRsydfdsdfydtd , (9)

­ vCI0sRs
0sf0d , (10)

where v ­ dfydt is the angular velocity to be measured.
If we define

i0 ­ CI0sRssf0d , (11)

then, by division, Eqs. (10) and (11) lead to the following
solution for v:

v ­ fsdiydtdyi0gyfRs
0sf0dyRssf0dg . (12)

Equation (12) provides the basis for measuring the an-
gular speed v by use of the reflection sensor system of
Fig. 14. The numerator of the right-hand side is deter-
mined by analysis of the electrical output pulse of the
photodetector for each rotation of the shaft, and the
denominator is a characteristic of the reflective sensor
element.

Because the system measures v once for each full rota-
tion of the shaft, the angular acceleration can be readily
calculated from data obtained from two successive pulses
from the simple relation

a ­ dvydt ø sv2 2 v1dyDt , (13)

where Dt is the time separation of the two consecutive
pulses.

We have implemented the technique presented above
to measure the rotational speed of a small variable-speed
motor. A typical output pulse is shown in Fig. 15, which
leads to a measured speed of 840 rpm. Measurements at
different speeds have been carried out, and the results ob-
tained by our sensor were compared with those obtained
by a commercial tachometer,11 as shown in Fig. 16. The
good agreement (to within 64%) confirms the validity of
this simple reflection sensor.

If the passive SiO2 –Si reflector is replaced with an ac-
tive Si photodiode (which is coated with an oxide layer of
the same 311-nm thickness) one can measure the angular
speed associated with the torsional oscillation of a shaft
or a column without the use of any of the reflection optics
that appear in Fig. 14. In this case the output signal of

Fig. 15. Typical output electrical pulse of photodiode D in the
experiment described in Fig. 14 obtained at a rotational speed
of 840 rpm.
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Fig. 16. Correlation of the results obtained with the rotation
sensor system of Fig. 14 with those obtained with a commercial
tachometer.

the shaft-mounted reflective Si photodiode becomes pro-
portional to s1 2 Rsd instead of to Rs, and the analysis
of Eqs. (8)–(12) can be modified accordingly. Because of
wiring constraints, continuous (unlimited) rotation of the
shaft is not permitted. To operate the active sensor in
ambient light we can interrupt the input signal beam by
a chopper, and we can measure the output signal of the
shaft-mounted detector at the modulation frequency by
using lock-in signal detection.

6. CONCLUSIONS
We have shown that the reflectance of a surface as a
function of incidence angle can be tailored to be linear
over a certain range by a transparent thin-film coating
of the appropriate refractive index and thickness. Lin-
earization at and near normal incidence is possible for any
incident polarization and results in a maximally flat re-
sponse. The more practically important linearization in
the middle and high ranges of incidence angle is achieved
for s-polarized light. Results are presented for coatings
upon Si and other substrates at the He–Ne laser wave-

length of 633 nm. A particular design that uses a SiO2

film of 311-nm thickness upon Si to give a linear response
over the range 63 6 7± is used as a sensor element to
measure the angular speed of a rotating shaft. An error
analysis indicates that small errors of the film thickness,
film refractive index, or incident light polarization can be
tolerated.
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