118 research outputs found

    Trophic Relationships and Habitat Preferences of Delphinids from the Southeastern Brazilian Coast Determined by Carbon and Nitrogen Stable Isotope Composition

    Get PDF
    To investigate the foraging habitats of delphinids in southeastern Brazil, we analyzed stable carbon (δ13C) and nitrogen (δ15N) isotopes in muscle samples of the following 10 delphinid species: Sotalia guianensis, Stenella frontalis, Tursiops truncatus, Steno bredanensis, Pseudorca crassidens, Delphinus sp., Lagenodelphis hosei, Stenella attenuata, Stenella longirostris and Grampus griseus. We also compared the δ13C and δ15N values among four populations of S. guianensis. Variation in carbon isotope results from coast to ocean indicated that there was a significant decrease in δ13C values from estuarine dolphins to oceanic species. S. guianensis from Guanabara Bay had the highest mean δ13C value, while oceanic species showed significantly lower δ13C values. The highest δ15N values were observed for P. crassidens and T. truncatus, suggesting that these species occupy the highest trophic position among the delphinids studied here. The oceanic species S. attenuata, G. griseus and L. hosei had the lowest δ15N values. Stable isotope analysis showed that the three populations of S. guianensis in coastal bays had different δ13C values, but similar δ15N results. Guiana dolphins from Sepetiba and Ilha Grande bays had different foraging habitat, with specimens from Ilha Grande showing more negative δ13C values. This study provides further information on the feeding ecology of delphinids occurring in southeastern Brazil, with evidence of distinctive foraging habitats and the occupation of different ecological niches by these species in the study area.Peer reviewe

    Exercise training in the aerobic/anaerobic metabolic transition prevents glucose intolerance in alloxan-treated rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ninety percent of cases of diabetes are of the slowly evolving non-insulin-dependent type, or Type 2 diabetes. Lack of exercise is regarded as one of the main causes of this disorder. In this study we analyzed the effects of physical exercise on glucose homeostasis in adult rats with type 2 diabetes induced by a neonatal injection of alloxan.</p> <p>Methods</p> <p>Female Wistar rats aged 6 days were injected with either 250 mg/kg of body weight of alloxan or citrate buffer 0.01 M (controls). After weaning, half of the animals in each group were subjected to physical training adjusted to meet the aerobic-anaerobic metabolic transition by swimming 1 h/day for 5 days a week with weight overloads. The necessary overload used was set and periodically readjusted for each rat through effort tests based on the maximal lactate steady state procedure. When aged 28, 60, 90, and 120 days, the rats underwent glucose tolerance tests (GTT) and their peripheral insulin sensitivity was evaluated using the HOMA index.</p> <p>Results</p> <p>The area under the serum glucose curve obtained through GTT was always higher in alloxan-treated animals than in controls. A decrease in this area was observed in trained alloxan-treated rats at 90 and 120 days old compared with non-trained animals. At 90 days old the trained controls showed lower HOMA indices than the non-trained controls.</p> <p>Conclusion</p> <p>Neonatal administration of alloxan induced a persistent glucose intolerance in all injected rats, which was successfully counteracted by physical training in the aerobic/anaerobic metabolic transition.</p
    corecore