15 research outputs found
Rational coordination of crowdsourced resources for geo-temporal request satisfaction
Existing mobile devices roaming around the mobility field should be considered as useful resources in geo-temporal request satisfaction. We refer to the capability of an application to access a physical device at particular geographical locations and times as GeoPresence, and we pre- sume that mobile agents participating in GeoPresence-capable applica- tions should be rational, competitive, and willing to deviate from their routes if given the right incentive. In this paper, we define the Hitch- hiking problem, which is that of finding the optimal assignment of re- quests with specific spatio-temporal characteristics to competitive mobile agents subject to spatio-temporal constraints. We design a mechanism that takes into consideration the rationality of the agents for request sat- isfaction, with an objective to maximize the total profit of the system. We analytically prove the mechanism to be convergent with a profit com- parable to that of a 1/2-approximation greedy algorithm, and evaluate its consideration of rationality experimentally.Supported in part by NSF Grants; #1430145, #1414119, #1347522, #1239021, and #1012798
Multi-capacity bin packing with dependent items and its application to the packing of brokered workloads in virtualized environments
Providing resource allocation with performance
predictability guarantees is increasingly important in cloud
platforms, especially for data-intensive applications, in which
performance depends greatly on the available rates of data
transfer between the various computing/storage hosts underlying
the virtualized resources assigned to the application. Existing
resource allocation solutions either assume that applications
manage their data transfer between their virtualized resources, or
that cloud providers manage their internal networking resources.
With the increased prevalence of brokerage services in cloud
platforms, there is a need for resource allocation solutions that
provides predictability guarantees in settings, in which neither
application scheduling nor cloud provider resources can be
managed/controlled by the broker. This paper addresses this
problem, as we define the Network-Constrained Packing (NCP)
problem of finding the optimal mapping of brokered resources
to applications with guaranteed performance predictability. We
prove that NCP is NP-hard, and we define two special instances
of the problem, for which exact solutions can be found efficiently.
We develop a greedy heuristic to solve the general instance of the
NCP problem , and we evaluate its efficiency using simulations
on various application workloads, and network models.This work was done while author was at Boston University. It was partially supported by NSF CISE awards #1430145, #1414119, #1239021 and #1012798. (1430145 - NSF CISE; 1414119 - NSF CISE; 1239021 - NSF CISE; 1012798 - NSF CISE
Mechanism design for spatio-temporal request satisfaction in mobile networks
Mobile agents participating in geo-presence-capable crowdsourcing applications should be presumed rational, competitive, and willing to deviate from their routes if given the right incentive. In this paper, we design a mechanism that takes into consideration this rationality for request satisfaction in such applications. We propose the Geo-temporal Request Satisfaction (GRS) problem to be that of finding the optimal assignment of requests with specific spatio-temporal characteristics to competitive mobile agents subject to spatio-temporal constraints. The objective of the GRS problem is to maximize the total profit of the system subject to our rationality assumptions. We define the problem formally, prove that it is NP-Complete, and present a practical solution mechanism, which we prove to be convergent, and which we evaluate experimentally.National Science Foundation (1012798, 0952145, 0820138, 0720604, 0735974
Incentive compatible route coordination of crowdsourced resources and its application to GeoPresence-as-a-Service
With the recent trend in crowdsourcing, i.e., using the power of crowds to assist in satisfying demand, the pool of resources suitable for GeoPresen- ce-capable systems has expanded to include already roaming devices, such as mobile phones, and moving vehicles. We envision an environment, in which the motion of these crowdsourced mobile resources is coordinated, according to their preexisting schedules to satisfy geo-temporal demand on a mobility field. In this paper, we propose an incentive compatible route coordination mechanism for crowdsourced resources, in which participating mobile agents satisfy geo-temporal requests in return for monetary rewards. We define the Flexible Route Coordination (FRC) problem, in which an agent's exibility is exploited to maximize the coverage of a mo- bility field, with an objective to maximize the revenue collected from sat- isfied paying requests. Given that the FRC problem is NP-hard, we define an optimal algorithm to plan the route of a single agent on a graph with evolving labels, then we use that algorithm to define a 1 2 -approximation algorithm to solve the problem in its general model, with multiple agents. Moreover, we define an incentive compatible, rational, and cash-positive payment mechanism, which guarantees that an agent's truthfulness about its exibility is an ex-post Nash equilibrium strategy. Finally, we analyze the proposed mechanisms theoretically, and evaluate their performance experimentally using real mobility traces from urban environments.Supported in part by NSF Grants, #1430145, #1414119, #1347522, #1239021, and #1012798
Scheduling of data-intensive workloads in a brokered virtualized environment
Providing performance predictability guarantees is increasingly important in cloud platforms, especially for data-intensive applications, for which performance depends greatly on the available rates of data transfer between the various computing/storage hosts underlying the virtualized resources assigned to the application. With the increased prevalence of brokerage services in cloud platforms, there is a need for resource management solutions that consider the brokered nature of these workloads, as well as the special demands of their intra-dependent components. In this paper, we present an offline mechanism for scheduling batches of brokered data-intensive workloads, which can be extended to an online setting. The objective of the mechanism is to decide on a packing of the workloads in a batch that minimizes the broker's incurred costs, Moreover, considering the brokered nature of such workloads, we define a payment model that provides incentives to these workloads to be scheduled as part of a batch, which we analyze theoretically. Finally, we evaluate the proposed scheduling algorithm, and exemplify the fairness of the payment model in practical settings via trace-based experiments
What’s in it for me? Incentive-compatible route coordination of crowdsourced resources
With the recent trend in crowdsourcing, i.e., using the power of crowds to assist in satisfying demand, the pool of resources suitable for GeoPresence-capable systems has expanded to include already roaming devices, such as mobile phones, and moving vehicles. We envision an environment, in which the motion of these crowdsourced mobile resources is coordinated, according to their preexisting schedules to satisfy geo-temporal demand on a mobility field. In this paper, we propose an incentive compatible route coordination mechanism for crowdsourced resources, in which participating mobile agents satisfy geo-temporal requests in return for monetary rewards. We define the Flexible Route Coordination (FRC) problem, in which an agent’s flexibility is exploited to maximize the coverage of a mobility field, with an objective to maximize the revenue collected from satisfied paying requests. Given that the FRC problem is NP-hard, we define an optimal algorithm to plan the route of a single agent on a graph with evolving labels, then we use that algorithm to define a 1/2-approximation algorithm to solve the problem in its general model, with multiple agents. Moreover, we define an incentive compatible, rational, and cash-positive payment mechanism, which guarantees that an agent’s truthfulness about its flexibility is an ex-post Nash equilibrium strategy. Finally, we analyze the proposed mechanisms theoretically, and evaluate their performance experimentally using real mobility traces from urban environments.Supported in part by NSF Grants, #1430145, #1414119, #1347522, #1239021, and #1012798
Network-constrained packing of brokered workloads in virtualized environments
Providing resource allocation with performance predictability guarantees is increasingly important in cloud platforms, especially for data-intensive applications, in which performance depends greatly on the available rates of data transfer between the various computing/storage hosts underlying the virtualized resources assigned to the application. Existing resource allocation solutions either assume that applications manage their data transfer between their virtualized resources, or that cloud providers manage their internal networking resources.With the increased prevalence of brokerage services in cloud platforms, there is a need for resource allocation solutions that provides predictability guarantees in settings, in which neither application scheduling nor cloud provider resources can be managed/controlled by the broker. This paper addresses this problem, as we define the Network-Constrained Packing (NCP)problem of finding the optimal mapping of brokered resources to applications with guaranteed performance predictability. We prove that NCP is NP-hard, and we define two special instances of the problem, for which exact solutions can be found efficiently. We develop a greedy heuristic to solve the general instance of the NCP problem, and we evaluate its efficiency using simulations on various application workloads, and network models.This work is supported by NSF CISE CNS Award #1347522, # 1239021, # 1012798
Recommended from our members
Recent Major Improvements to the ALS Sector 5 MacromolecularCrystallography Beamlines
Although the Advanced Light Source (ALS) was initially conceived primarily as a low energy (1.9GeV) 3rd generation source of VUV and soft x-ray radiation it was realized very early in the development of the facility that a multipole wiggler source coupled with high quality, (brightness preserving), optics would result in a beamline whose performance across the optimal energy range (5-15keV) for macromolecular crystallography (MX) would be comparable to, or even exceed, that of many existing crystallography beamlines at higher energy facilities. Hence, starting in 1996, a suite of three beamlines, branching off a single wiggler source, was constructed, which together formed the ALS Macromolecular Crystallography Facility. From the outset this facility was designed to cater equally to the needs of both academic and industrial users with a heavy emphasis placed on the development and introduction of high throughput crystallographic tools, techniques, and facilities--such as large area CCD detectors, robotic sample handling and automounting facilities, a service crystallography program, and a tightly integrated, centralized, and highly automated beamline control environment for users. This facility was immediately successful, with the primary Multiwavelength Anomalous Diffraction beamline (5.0.2) in particular rapidly becoming one of the foremost crystallographic facilities in the US--responsible for structures such as the 70S ribosome. This success in-turn triggered enormous growth of the ALS macromolecular crystallography community and spurred the development of five additional ALS MX beamlines all utilizing the newly developed superconducting bending magnets ('superbends') as sources. However in the years since the original Sector 5.0 beamlines were built the performance demands of macromolecular crystallography users have become ever more exacting; with growing emphasis placed on studying larger complexes, more difficult structures, weakly diffracting or smaller crystals, and on more rapidly screening larger numbers of candidate crystals; all of these requirements translate directly into a pressing need for increased flux, a tighter beam focus and faster detectors. With these growing demands in mind a major program of beamline and detector upgrades was initiated in 2004 with the goal of dramatically enhancing all aspects of beamline performance. Approximately $3 million in funding from diverse sources including NIH, LBL, the ALS, and the industrial and academic members of the beamline Participating Research Team (PRT), has been employed to develop and install new high performance beamline optics and to purchase the latest generation of CCD detectors. This project, which reached fruition in early 2007, has now fulfilled all of its original goals--boosting the flux on all three beamlines by up to 20-fold--with a commensurate reduction in exposure and data acquisition times for users. The performance of the Sector 5.0 beamlines is now comparable to that of the latest generation ALS superbend beamlines and, in the case of beamline 5.0.2, even surpasses it by a considerable margin. Indeed, the present performance of this beamline is now, once again, comparable to that envisioned for many MX beamlines planned or under construction on newer or higher energy machines
Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries
Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely
Preparation and characterization of cobalt aluminate spinels CoAl \u3csub\u3e2\u3c/sub\u3eO \u3csub\u3e4\u3c/sub\u3e doped with magnesium oxide
Cobalt aluminate spinels were prepared from cobalt and aluminium nitrate solutions using sol–gel synthesis route by ammonium hydroxide precipitation. The gels were dried at 75°C, doped with different amounts of magnesium nitrate, and then calcined for 3 h at 650°C. Sample characterization was carried out by infrared spectroscopy, X-ray diffraction, scanning electron microscopy, nitrogen adsorption studies, thermogravimetry and by determining acid–base properties. This was carried out with the objective of elucidating the effect, if any, of the presence of the dopant on the spinel structure and properties. The spinel structure was clearly exhibited in all of the prepared samples which were predominantly mesoporous. None of the samples showed any acidic properties, i.e. they exhibited only basic properties. We found that doping with Mg resulted in a slightly increased disorder of cation distribution for those samples doped with higher amounts of Mg. Doping also led to a general increase in surface areas and the development of larger pores, as well as larger content of chemisorbed water