111 research outputs found

    Addressing retained austenite stability in advanced high strength steels

    Get PDF
    Advances in the development of new high strength steels have resulted in microstructures containing significant volume fractions of retained austenite. The transformation of retained austenite to martensite upon straining contributes towards improving the ductility. However, in order to gain from the above beneficial effect, the volume fraction, size, morphology and distribution of the retained austenite need to be controlled. In this regard, it is well known that carbon concentration in the retained austenite is responsible for its chemical stability, whereas its size and morphology determines its mechanical stability. Thus, to achieve the required mechanical properties, control of the processing parameters affecting the microstructure development is essential

    Habit plane determination from reconstructed parent phase orientation maps

    Full text link
    This study details the development and validation of a new algorithm that determines the dominant habit plane of a transformed child phase from orientation maps of a single planar cross-section. The method describes the habit plane in terms of its five-parameter grain boundary character and couples it to the specific orientation relationship of the identified orientation variant. The symmetry operations associated with the specific orientation relationship of the variants are applied to transform habit plane traces as determined in the specimen-fixed reference frame into the parent or child reference frame, allowing for the fitting of the habit plane. Our algorithm stands out by its robustness, computational efficiency, automation and ability to operate on fully transformed microstructures. Four automated methods for habit plane trace determination are proposed and compared. Detailed sensitivity analysis reveals that the proposed algorithm is exceptionally robust against poor accuracy in the measured traces and distortions in the orientation map, but more sensitive to inaccuracies propagated from parent grain reconstruction. Validation on a synthetic microstructure with a known habit plane and returned consistent results when applied to high and low carbon steels with different prior austenite grain sizes and orientation map resolutions. The habit planes were not significantly affected by the austenite grain sizes. The habit plane of the steel with 0.35 wt.% C was close to (111){\gamma} whereas the habit plane of steel with 0.71 wt.% C was closer to (575){\gamma}, in close agreement with previous work using two-surface stereological analysis and transmission electron microscopy-based trace analysis

    A comparative study of a NiTi alloy subjected to uniaxial monotonic and cyclic loading-unloading in tension using digital image correlation: The grain size effect

    Get PDF
    The present digital image correlation study characterised the local axial and shear strain fields of a 56Ni-44Ti wt.% shape memory alloy with an average grain size of 100 μm, under uniaxial monotonic and cyclic loading-unloading in tension. To elucidate the grain size effect, the results were compared with a previous investigation of the same alloy with an average grain size of 10 μm. The maximum local axial strain rate signified the direction and extent of the localised transformation. The widened single inclined transformation band and multiple criss-crossing patterns assist in straightening the sample edge by releasing an in-plane moment instigated by local shear strains. Electron back-scattering diffraction analyses showed that the plastic strain within the B2 grains and the remnant B19′ variants account for the residual strains after unloading. Smaller grain sizes correspond to greater constraint from grain boundaries, higher interfacial energy and higher elastic strain energy barrier for transformation, and smaller intragranular heterogeneity of plastic deformation. This is reflected in the increases to the transformation start stress, stress level and stress-strain slope within the macroscopic stress plateau region and smaller complete transformation strain, super-elastic and residual strains upon unloading

    The microstructure, texture and mechanical properties of AS-ECAE Interstitial-free steel and copper

    Get PDF
    A comparison between the microstructure, texture and mechanical properties of bcc interstitial-free (IF) steel and fcc copper (Cu) for up to N = 8 passes Equal Channel Angular Extrusion (ECAE) via route BC processing was undertaken. Transmission Electron Microscopy (TEM) and Electron Back-Scattering Diffraction (EBSD) studies revealed that the deformation microstructures of both metals evolves from low-angled microbands and dislocation cells after N=2 passes towards more equiaxed, homogeneous subgrain/grain structures comprising higher-angles of misorientation after N = 8 passes. In both metals, the percentage rise in Σ3 and random boundaries are attributed to mechanisms that favour low-energy boundary configurations during ECAE. Texture evolution involves gradual changes in individual component strengths during multi-pass ECAE. The bcc and fcc textures are correlated by interchanging the Miller indices of the slip plane and slip direction between the two cubic crystal systems. The uniaxial tensile curves of both materials are representative of significant cold-working and depict higher 0.2% proof stresses, a small period of uniform elongation, necking and lastly, failure via geometrical softening. Constitutive modelling suggests that rather than a change in deformation mechanism, the preservation of ductility up to N = 8 passes is associated with an increase in the mean free path of dislocations; with slip via dislocation glide remaining as the dominant carrier of plastic strain in both metals

    Experimental and Self-Consistent Modeling Study of De-twinning in a Twinning-Induced Plasticity Steel

    Get PDF
    The effect of compression-tension loading on the microstructure evolution in a fully annealed Fe-24Mn-3Al-2Si-1Ni-0.06C twinning-induced plasticity steel has been investigated. Electron back-scattering diffraction was used to track a region of interest at true strains of 0 (initial), − 0.09 (after forward compression loading), and 0.04 (after reverse tension loading). All deformation twins detected after forward compression loading were found to de-twin upon subsequent reverse tension loading, likely due to the reverse glide of partial dislocations bounding the twins. The reverse loading behavior, including the twinning and de-twinning processes, was successfully simulated using a recently modified dislocation-based hardening model embedded in the visco-plastic self-consistent polycrystal framework, taking into account the dislocation accumulation/annihilation, as well as the twin barrier and back-stress effects

    Room-Temperature Thermoelectric Performance of n‑Type Multiphase Pseudobinary Bi 2 Te 3 –Bi 2 S 3 Compounds: Synergic Effects of Phonon Scattering and Energy Filtering

    Get PDF
    Bismuth telluride-based alloys possess the highest efficiencies for the low-temperature-range (<500 K) applications among thermoelectric materials. Despite significant advances in the efficiency of p-type Bi2Te3-based materials through engineering the electronic band structure by convergence of multiple bands, the n-type pair still suffers from poor efficiency due to a lower number of electron pockets near the conduction band edge than the valence band. To overcome the persistent low efficiency of n-type Bi2Te3-based materials, we have fabricated multiphase pseudobinary Bi2Te3–Bi2S3 compounds to take advantages of phonon scattering and energy filtering at interfaces, enhancing the efficiency of these materials. The energy barrier generated at the interface of the secondary phase of Bi14Te13S8 in the Bi2Te3 matrix resulted in a higher Seebeck coefficient and consequently a higher power factor in multiphase compounds than the single-phase alloys. This effect was combined with low thermal conductivity achieved through phonon scattering at the interfaces of finely structured multiphase compounds and resulted in a relatively high thermoelectric figure of merit of ∼0.7 over the 300–550 K temperature range for the multiphase sample of n-type Bi2Te2.75S0.25, double the efficiency of single-phase Bi2Te3. Our results inform an alternative alloy design to enhance the performance of thermoelectric materials
    • …
    corecore