21 research outputs found

    Fusobacterium Is Associated with Colorectal Adenomas

    Get PDF
    The human gut microbiota is increasingly recognized as a player in colorectal cancer (CRC). While particular imbalances in the gut microbiota have been linked to colorectal adenomas and cancer, no specific bacterium has been identified as a risk factor. Recent studies have reported a high abundance of Fusobacterium in CRC subjects compared to normal subjects, but this observation has not been reported for adenomas, CRC precursors. We assessed the abundance of Fusobacterium species in the normal rectal mucosa of subjects with (n = 48) and without adenomas (n = 67). We also confirmed previous reports on Fusobacterium and CRC in 10 CRC tumor tissues and 9 matching normal tissues by pyrosequencing. We extracted DNA from rectal mucosal biopsies and measured bacterial levels by quantitative PCR of the 16S ribosomal RNA gene. Local cytokine gene expression was also determined in mucosal biopsies from adenoma cases and controls by quantitative PCR. The mean log abundance of Fusobacterium or cytokine gene expression between cases and controls was compared by t-test. Logistic regression was used to compare tertiles of Fusobacterium abundance. Adenoma subjects had a significantly higher abundance of Fusobacterium species compared to controls (p = 0.01). Compared to the lowest tertile, subjects with high abundance of Fusobacterium were significantly more likely to have adenomas (OR 3.66, 95% CI 1.37–9.74, p-trend 0.005). Cases but not controls had a significant positive correlation between local cytokine gene expression and Fusobacterium abundance. Among cases, the correlation for local TNF-α and Fusobacterium was r = 0.33, p = 0.06 while it was 0.44, p = 0.01 for Fusobacterium and IL-10. These results support a link between the abundance of Fusobacterium in colonic mucosa and adenomas and suggest a possible role for mucosal inflammation in this process

    Population Genomics Provide Insights into the Global Genetic Structure of \u3ci\u3eColletotrichum graminicola\u3c/i\u3e, the Causal Agent of Maize Anthracnose

    Get PDF
    Understanding the genetic diversity and mechanisms underlying genetic variation in pathogen populations is crucial to the development of effective control strategies. We investigated the genetic diversity and reproductive biology of Colletotrichum graminicola isolates which infect maize by sequencing the genomes of 108 isolates collected from 14 countries using restriction site-associated DNA sequencing (RAD-seq) and wholegenome sequencing (WGS). Clustering analyses based on single-nucleotide polymorphisms revealed three genetic groups delimited by continental origin, compatible with short-dispersal of the pathogen and geographic subdivision. Intra- and intercontinental migration was observed between Europe and South America, likely associated with the movement of contaminated germplasm. Low clonality, evidence of genetic recombination, and high phenotypic diversity were detected. We show evidence that, although it is rare (possibly due to losses of sexual reproduction- and meiosis-associated genes) C. graminicola can undergo sexual recombination. Our results support the hypotheses that intra- and intercontinental pathogen migration and genetic recombination have great impacts on the C. graminicola population structure

    Population Genomics Provide Insights into the Global Genetic Structure of Colletotrichum graminicola, the Causal Agent of Maize Anthracnose

    Get PDF
    Understanding the genetic diversity and mechanisms underlying genetic variation in pathogen populations is crucial to the development of effective control strategies. We investigated the genetic diversity and reproductive biology of Colletotrichum graminicola isolates which infect maize by sequencing the genomes of 108 isolates collected from 14 countries using restriction site-associated DNA sequencing (RAD-seq) and whole-genome sequencing (WGS). Clustering analyses based on single-nucleotide polymorphisms revealed three genetic groups delimited by continental origin, compatible with short-dispersal of the pathogen and geographic subdivision. Intra- and intercontinental migration was observed between Europe and South America, likely associated with the movement of contaminated germplasm. Low clonality, evidence of genetic recombination, and high phenotypic diversity were detected. We show evidence that, although it is rare (possibly due to losses of sexual reproduction- and meiosis-associated genes) C. graminicola can undergo sexual recombination. Our results support the hypotheses that intra- and intercontinental pathogen migration and genetic recombination have great impacts on the C. graminicola population structure. IMPORTANCE Plant pathogens cause significant reductions in yield and crop quality and cause enormous economic losses worldwide. Reducing these losses provides an obvious strategy to increase food production without further degrading natural ecosystems; however, this requires knowledge of the biology and evolution of the pathogens in agroecosystems. We employed a population genomics approach to investigate the genetic diversity and reproductive biology of the maize anthracnose pathogen (Colletotrichum graminicola) in 14 countries. We found that the populations are correlated with their geographical origin and that migration between countries is ongoing, possibly caused by the movement of infected plant material. This result has direct implications for disease management because migration can cause the movement of more virulent and/or fungicide-resistant genotypes. We conclude that genetic recombination is frequent (in contrast to the traditional view of C. graminicola being mainly asexual), which strongly impacts control measures and breeding programs aimed at controlling this disease.This research was supported by grants AGL2015-66362-R, RTI2018-093611-B-100, and PID2021-125349NB-100, funded by the Ministry of Science and Innovation (MCIN) of Spain AEI/10.13039/501100011033; and by grant SA165U13 funded by the Junta de Castilla y LĂ©on. F.R. was supported by grant FJC2020-043351-I financed by MCIN/AEI /10.13039/501100011033 and by the European Union NextGenerationEU/PRTR. R.B. was supported by the postdoctoral program of USAL (Program II). F.B.C.-F. was supported by grant BES-2016-078373, funded by MCIN/AEI/10.13039/501100011033. S.B. was supported by a fellowship program from the regional government of Castilla y LeĂłn. W.B. was supported by a productivity fellowship from the Conselho Nacional de Desenvolvimento CientĂ­fico e TecnolĂłgico (CNPq 307855/2019-8). Genome sequencing was funded by the UNC Microbiome Core, which is funded in part by the Center for Gastrointestinal Biology and Disease (CGIBD P30 DK034987) and the UNC Nutrition Obesity Research Center (NORC P30 DK056350). P.D.E. was partially supported by the USDA National Institute of Food and Federal Appropriations under Project PEN04660 and accession no. 1016474.Peer reviewe

    Sequence analysis of pLBB1, a cryptic plasmid from Lactobacillus delbrueckii subsp. bulgaricus

    No full text
    The first report of the complete nucleotide sequence of a cryptic plasmid from Lactobacillus delbrueckii subsp. bulgaricus (Lactobacillus bulgaricus) is presented. The plasmid pLBB1 consists of 6127 bp with a GC content of 44.8%. No ssDNA was detected by hybridization experiments, which is consistent with the notion that pLBB1 does not replicate by a rolling circle mechanism. A putative replication region of pLBB1 was cloned and found to be functional in Lactobacillus johnsonii and Lactococcus lactis. Plasmid pLBB1 showed significant DNA sequence identity with plasmid pLL1212 from Lactobacillus delbrueckii subsp. lactis (Lactobacillus lactis) CRL1212 (GenBank accession No. AF109691). Four open reading frames (ORFs) larger than 100 amino acids were identified. ORFA shared similarity with a putative primase-helicase system, and ORFB and ORFC exhibited limited identity with a mobilization protein and a transposase, respectively. Curing experiments did not allowed us to assign a function to the ORFs.Nous présentons la première séquence complétée d’un plasmide cryptique de Lactobacillus delbrueckii subsp. bulgaricus (Lactobacillus bulgaricus). Le plasmide pLBB1 est composé de 6127 pb ayant un contenu en CG de 44,8 %. Aucun ADN simple brin n’a été détecté par l’expérience d’hybridation, ce qui est conforme avec la notion que pLBB1 ne se réplique pas par un mécanisme de cercle roulant. Une éventuelle région de réplication de pLBB1 a été clonée et s’est avérée fonctionnelle chez Lactobacillus johnsonii et Lactococcus lactis. Le plasmide pLBB1 a démontré une similitude significative avec le plasmide pLL1212 de Lactobacillus delbrueckii subsp. lactis (Lactobacillus lactis) CRL1212 (no . d’identification GenBank AF109691). Quatre cadres de lecture ouverts (CLOs) plus grands que 100 acides aminés ont été identifiés. ORFA ressemblait à un système de primase–hélicase putatif, et ORFB et ORFC présentaient des identités limitées avec une protéine de mobilisation et une transposase, respectivement. Des expériences de cure du plasmide n’ont pas permis de décerner des fonctions aux ORFs.Fil: Azcárate Peril, María Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Raya, Raul Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentin

    Role of Antioxidant Enzymes in Bacterial Resistance to Organic Acids â–ż

    Get PDF
    Growth in aerobic environments has been shown to generate reactive oxygen species (ROS) and to cause oxidative stress in most organisms. Antioxidant enzymes (i.e., superoxide dismutases and hydroperoxidases) and DNA repair mechanisms provide protection against ROS. Acid stress has been shown to be associated with the induction of Mn superoxide dismutase (MnSOD) in Lactococcus lactis and Staphylococcus aureus. However, the relationship between acid stress and oxidative stress is not well understood. In the present study, we showed that mutations in the gene coding for MnSOD (sodA) increased the toxicity of lactic acid at pH 3.5 in Streptococcus thermophilus. The inclusion of the iron chelators 2,2′-dipyridyl (DIP), diethienetriamine-pentaacetic acid (DTPA), and O-phenanthroline (O-Phe) provided partial protection against 330 mM lactic acid at pH 3.5. The results suggested that acid stress triggers an iron-mediated oxidative stress that can be ameliorated by MnSOD and iron chelators. These findings were further validated in Escherichia coli strains lacking both MnSOD and iron SOD (FeSOD) but expressing a heterologous MnSOD from S. thermophilus. We also found that, in E. coli, FeSOD did not provide the same protection afforded by MnSOD and that hydroperoxidases are equally important in protecting the cells against acid stress. These findings may explain the ability of some microorganisms to survive better in acidified environments, as in acid foods, during fermentation and accumulation of lactic acid or during passage through the low pH of the stomach

    Impact of dietary isoflavone supplementation on the fecal microbiota and its metabolites in postmenopausal women

    No full text
    Isoflavones are metabolized by components of the gut microbiota and can also modulate their composition and/or activity. This study aimed to analyze the modifications of the fecal microbial populations and their metabolites in menopausal women under dietary treatment with soy isoflavones for one month. Based on the level of urinary equol, the women had been stratified previously as equol-producers (n = 3) or as equol non-producers (n = 5). The composition of the fecal microbiota was assessed by high-throughput sequencing of 16S rRNA gene amplicons and the changes in fatty acid excretion in feces were analyzed by gas chromatography. A greater proportion of sequence reads of the genus Slackia was detected after isoflavone supplementation. Sequences of members of the family Lachnospiraceae and the genus Pseudoflavonifractor were significantly increased in samples from equol-producing women. Multivariable analysis showed that, after isoflavone treatment, the fecal microbial communities of equol producers were more like each other. Isoflavone supplementation increased the production of caproic acid, suggesting differential microbial activity, leading to a high fecal excretion of this compound. However, differences between equol producers and non-producers were not scored. These results may contribute to characterizing the modulating effect of isoflavones on the gut microbiota, which could lead to unravelling of their beneficial health effects.The research was funded by the Spanish Ministry of Economy and Competitiveness (MINECO) (AGL-2014-57820-R) and Asturias Principality (GRUPIN14-137). The Microbiome Core Facility is supported in part by the NIH/National Institute of Diabetes and Digestive and Kidney Diseases grant P30 DK34987. L.G. was supported by a research contract of the FPI Program from MINECO (BES-2012-062502). S.D. was supported by a research contract from MINECO (RYC-2016- 19726)

    Desarrollo de un biobanco de microbiota intestinal para estudiar disbiosis microbianas asociadas a cáncer colorrectal

    No full text
    Trabajo presentado en el V Congreso Nacional de Biobancos, celebrado en Palma de Mallorca, España, del 12 al 14 de noviembre de 2014El microbioma intestinal humano (microbiota endógena y sus genes) es considerado un órgano más del cuerpo y su estudio es un campo de enorme interés científico en la actualidad. Las heces constituyen el material biológico de más fácil disponibilidad y más usado para su análisis. Recientemente, se ha observado una importante relación entre determinadas alteraciones del microbioma intestinal (disbiosis) y diversas enfermedades, como el cáncer colorrectal (CRC), aunque es difícil determinar si las modificaciones de la microbiota son la causa o la consecuencia. Es necesario detectar y conocer qué microorganismos pueden ser indicadores del desarrollo de CRC. Para ello, el BPA y el IPLA-CSIC han desarrollado un biobanco de microbiota intestinal que permita el estudio y seguimiento de los microorganismos intestinales presentes tanto en heces como asociados a la mucosa colónica en pacientes con CRC, así como en voluntarios de programas de cribado de CRC. Se busca obtener un repositorio de la microbiota intestinal que permita estudios prospectivos, de seguimiento, así como el posible descubrimiento de biomarcadores microbianos de CRC en población de riesgo.Peer Reviewe

    Bacterial Ecology of Fermented Cucumber Rising pH Spoilage as Determined by Nonculture-Based Methods

    No full text
    9 Páginas; 4 Tablas; 2 FigurasFermented cucumber spoilage (FCS) characterized by rising pH and the appearance of manure- and cheese-like aromas is a challenge of significant economical impact for the pickling industry. Previous culture-based studies identified the yeasts Pichia manshurica and Issatchenkia occidentalis, 4 Gram-positive bacteria, Lactobacillus buchneri, Lactobacillus parrafaraginis, Clostridium sp., and Propionibacterium and 1 Gram-negative genus, Pectinatus, as relevant in various stages of FCS given their ability to metabolize lactic acid. It was the objective of this study to augment the current knowledge of FCS using culture-independent methods to microbiologically characterize commercial spoilage samples. Ion Torrent data and 16S rRNA cloning library analyses of samples collected from commercial fermentation tanks confirmed the presence of L. rapi and L. buchneri and revealed the presence of additional species involved in the development of FCS such as Lactobacillus namurensis, Lactobacillus acetotolerans, Lactobacillus panis, Acetobacter peroxydans, Acetobacter aceti, and Acetobacter pasteurianus at pH below 3.4. The culture-independent analyses also revealed the presence of species of Veillonella and Dialister in spoilage samples with pH above 4.0 and confirmed the presence of Pectinatus spp. during lactic acid degradation at the higher pH. Acetobacter spp. were successfully isolated from commercial samples collected from tanks subjected to air purging by plating on Mannitol Yeast Peptone agar. In contrast, Lactobacillus spp. were primarily identified in samples of FCS collected from tanks not subjected to air purging for more than 4 mo. Thus, it is speculated that oxygen availability may be a determining factor in the initiation of spoilage and the leading microbiota.A Postdoctoral Fellowship from the Spanish Government (MECD) fully funded Dr. E. Medina. We thank Mr. Seth Fornea with the USDA-ARS Food Science Research Unit, for technical help with HPLC analysis. We also thank Dr. Joscelin Díaz with the Dept. of Food, Bioprocessing and Nutrition Sciences for assistance with statistical analysis.Peer reviewe

    Development and Application of a upp-Based Counterselective Gene Replacement System for the Study of the S-Layer Protein SlpX of Lactobacillus acidophilus NCFM▿ †

    No full text
    In silico genome analysis of Lactobacillus acidophilus NCFM coupled with gene expression studies have identified putative genes and regulatory networks that are potentially important to this organism's survival, persistence, and activities in the gastrointestinal tract. Correlation of key genotypes to phenotypes requires an efficient gene replacement system. In this study, use of the upp-encoded uracil phosphoribosyltransferase (UPRTase) of L. acidophilus NCFM was explored as a counterselection marker to positively select for recombinants that have resolved from chromosomal integration of pORI-based plasmids. An isogenic mutant carrying a upp gene deletion was constructed and was resistant to 5-fluorouracil (5-FU), a toxic uracil analog that is also a substrate for UPRTase. A 3.0-kb pORI-based counterselectable integration vector bearing a upp expression cassette, pTRK935, was constructed and introduced into the Δupp host harboring the pTRK669 helper plasmid. Extrachromosomal replication of pTRK935 complemented the mutated chromosomal upp allele and restored sensitivity to 5-FU. This host background provides a platform for a two-step plasmid integration and excision strategy that can select for plasmid-free recombinants with either the wild-type or mutated allele of the targeted gene in the presence of 5-FU. The efficacy of the system was demonstrated by in-frame deletion of the slpX gene (LBA0512) encoding a novel 51-kDa secreted protein associated with the S-layer complex of L. acidophilus. The resulting ΔslpX mutant exhibited lower growth rates, increased sensitivity to sodium dodecyl sulfate, and greater resistance to bile. Overall, this improved gene replacement system represents a valuable tool for investigating the mechanisms underlying the probiotic functionality of L. acidophilus
    corecore