11 research outputs found

    Application of the modified Q-slope classification system for sedimentary rock slope stability assessment in Iran

    Get PDF
    The Q-slope system is an empirical method for discontinuous rock slope engineering classification and assessment. It has been introduced recently to provide an initial prediction of rock slope stability assessment by applying simple assumptions which tend to reflect different failure mechanisms. This study offers a correlation relationship between Q-slope and slope stability degree using case studies of sedimentary rock slopes from 10 regions of Iran. To this end, we have investigated 200 areas from these regions, gathered the necessary geotechnical data, have classified the slopes from a Q-slope perspective, and have estimated their stability relationships. Based on artificial intelligence techniques including k-nearest neighbours, support vector machine, Gaussian process, Decision tree, Random-forest, Multilayer perceptron, AdaBoost, Naive Bayes and Quadratic discriminant analysis, the relationships and classifications were implemented and revised in the Python high-level programming language. According to the results of the controlled learning models, the Q-slope equation for Iran has indicated that the stability-instability class distributions are limited to two linear states. These limits refer to the B-Line (lower limit) as β = 11.9log10(Qnumber)+46.3 and the U-Line (upper limit) as β = 17.2log10(Qnumber)+54.1. We present the modified Q-slope equation (β) to correct the primary relation for sedimentary rock slopes in Iran. To this end, the β-relation from Bar and Barton (2017) that is illustrated by Eq. (2) was modified and refined by the U-line and B-line relations as presented by Eqs. (3) and (4)

    An empirical method for slope mass rating-Q slope correlation for Isfahan province, Iran

    No full text
    The presented article provides an empirical method on rock slope classification, slope mass rating (SMR), Qslope, stability condition, failure type and stabilisation procedures for 35 road/railway discontinuous rock slopes after field surveys in Isfahan Province of Iran. Also, it presents the empirical correlation for SMR and Qslope classification system that prepares a link between the stability status (safety factor, reliability condition) and stabilisations (failure mechanism, support system) which performed on natural/trench slopes cases related sedimentary rocks cuts in the studied region. As results, the SMR-Qslope equation for Isfahan Province obtained as SMR = 11.89 ln(Qslope) + 71.92 (R2 = 0.756). • This method can be useful on a stability assessment and providing appropriate stabilisations for the discontinuous rock slope based on simple assumptions where used in different geotechnical projects such as road/railway slope, excavations, open-pit mining, trench boring, etc. • This method can be useful for quick calculation of stability conditions and suggestion of slope maintenance system in a short time as preliminary reactions. • This method can be used as an effective way to convert SMR and Qslope equations and used both benefits in geo-engineering application faced with discontinuous rock masses. • This method can be useful for future research on the empirical geomechanically classification and rock mass preliminary quantifications. • This method can be used as an appropriate database for SMR and Qslope classification

    An empirical method for slope mass rating-Q slope correlation for Isfahan province, Iran

    Get PDF
    The presented article provides an empirical method on rock slope classification, slope mass rating (SMR), Qslope, stability condition, failure type and stabilisation procedures for 35 road/railway discontinuous rock slopes after field surveys in Isfahan Province of Iran. Also, it presents the empirical correlation for SMR and Qslope classification system that prepares a link between the stability status (safety factor, reliability condition) and stabilisations (failure mechanism, support system) which performed on natural/trench slopes cases related sedimentary rocks cuts in the studied region. As results, the SMR-Qslope equation for Isfahan Province obtained as SMR = 11.89 ln(Qslope) + 71.92 (R2 = 0.756). • This method can be useful on a stability assessment and providing appropriate stabilisations for the discontinuous rock slope based on simple assumptions where used in different geotechnical projects such as road/railway slope, excavations, open-pit mining, trench boring, etc. • This method can be useful for quick calculation of stability conditions and suggestion of slope maintenance system in a short time as preliminary reactions. • This method can be used as an effective way to convert SMR and Qslope equations and used both benefits in geo-engineering application faced with discontinuous rock masses. • This method can be useful for future research on the empirical geomechanically classification and rock mass preliminary quantifications. • This method can be used as an appropriate database for SMR and Qslope classification
    corecore