31 research outputs found

    The Schwinger Model on a circle: relation between Path Integral and Hamiltonian approaches

    Full text link
    We solve the massless Schwinger model exactly in Hamiltonian formalism on a circle. We construct physical states explicitly and discuss the role of the spectral flow and nonperturbative vacua. Different thermodynamical correlation functions are calculated and after performing the analytical continuation are compared with the corresponding expressions obtained for the Schwinger model on the torus in Euclidean Path Integral formalism obtained before.Comment: 40 page

    The General Correlation Function in the Schwinger Model on a Torus

    Full text link
    In the framework of the Euclidean path integral approach we derive the exact formula for the general N-point chiral densities correlator in the Schwinger model on a torusComment: 17 pages, misprints corrected, references adde

    Witten-Veneziano Relation for the Schwinger Model

    Get PDF
    The Witten-Veneziano relation between the topological susceptibility of puregauge theories without fermions and the main contribution of the completetheory and the corresponding formula of Seiler and Stamatescu with theso-called contact term are discussed for the Schwinger model on a circle. Usingthe (Euclidean) path integral and the canonical (Hamiltonian) approaches atfinite temperatures we demonstrate that both formulae give the same result inthe limit of infinite volume and (or) zero temperature

    Some more remarks on the Witten-Veneziano formula for the η\eta' mass

    Get PDF
    We discuss some subtleties in connection with the new attempts to provide a firm basis for ths Witten-Veneziano formula.Comment: 9 page

    Chiral crystals in strong-coupling lattice QCD at nonzero chemical potential

    Get PDF
    We study the effective action for strong-coupling lattice QCD with one-component staggered fermions in the case of nonzero chemical potential and zero temperature. The structure of this action suggests that at large chemical potentials its ground state is a crystalline `chiral density wave' that spontaneously breaks chiral symmetry and translation invariance. In mean-field theory, on the other hand, we find that this state is unstable. We show that lattice artifacts are partly responsible for this, and suggest that if this phase exists in QCD, then finding it in Monte-Carlo simulations would require simulating on relatively fine lattices. In particular, the baryon mass in lattice units, m_B, should be considerably smaller than its strong-coupling limit of m_B~3.Comment: 33 pages, 8 figure

    Remarks on the thermodynamics and the vacuum energy of a quantum Maxwell gas on compact and closed manifolds

    Full text link
    The quantum Maxwell theory at finite temperature at equilibrium is studied on compact and closed manifolds in both the functional integral- and Hamiltonian formalism. The aim is to shed some light onto the interrelation between the topology of the spatial background and the thermodynamic properties of the system. The quantization is not unique and gives rise to inequivalent quantum theories which are classified by {\theta}-vacua. Based on explicit parametrizations of the gauge orbit space in the functional integral approach and of the physical phase space in the canonical quantization scheme, the Gribov problem is resolved and the equivalence of both quantization schemes is elucidated. Using zeta-function regularization the free energy is determined and the effect of the topology of the spatial manifold on the vacuum energy and on the thermal gauge field excitations is clarified. The general results are then applied to a quantum Maxwell gas on a n-dimensional torus providing explicit formulae for the main thermodynamic functions in the low- and high temperature regimes, respectively.Comment: 41 page

    Four-point Green functions in the Schwinger Model

    Get PDF
    The evaluation of the 4-point Green functions in the 1+1 Schwinger model is presented both in momentum and coordinate space representations. The crucial role in our calculations play two Ward identities: i) the standard one, and ii) the chiral one. We demonstrate how the infinite set of Dyson-Schwinger equations is simplified, and is so reduced, that a given n-point Green function is expressed only through itself and lower ones. For the 4-point Green function, with two bosonic and two fermionic external `legs', a compact solution is given both in momentum and coordinate space representations. For the 4-fermion Green function a selfconsistent equation is written down in the momentum representation and a concrete solution is given in the coordinate space. This exact solution is further analyzed and we show that it contains a pole corresponding to the Schwinger boson. All detailed considerations given for various 4-point Green functions are easily generizable to higher functions.Comment: In Revtex, 12 pages + 2 PostScript figure

    Bosonization in Particle Physics

    Get PDF
    Path integral techniques in collective fields are shown to be a useful analytical tool to reformulate a field theory defined in terms of microscopic quark (gluon) degrees of freedom as an effective theory of collective boson (meson) fields. For illustrations, the path integral bosonization approach is applied to derive a (non)linear sigma model from a Nambu-Jona-Lasinio (NJL) quark model. The method can be extended to include higher order derivative terms in meson fields or heavy-quark symmetries. It is also approximately applicable to QCD.Comment: 12 pages, LaTeX, uses lamuphys.sty, 5 LaTeX figures, talk given at the Workshop "Field Theoretical Tools in Polymer and Particle Physics", University Wuppertal, June 17-19, 199

    Fermi-Einstein condensation in dense QCD-like theories

    Full text link
    While pure Yang-Mills theory feature the centre symmetry, this symmetry is explicitly broken by the presence of dynamical matter. We study the impact of the centre symmetry in such QCD-like theories. In the analytically solvable Schwinger model, centre transitions take place even under extreme conditions, temperature and/or density, and we show that they are key to the solution of the Silver-Blaze problem. We then develop an effective SU(3) quark model which confines quarks by virtue of centre sector transitions. The phase diagram by confinement is obtained as a function of the temperature and the chemical potential. We show that at low temperatures and intermediate values for the chemical potential the centre dressed quarks undergo condensation due to Bose like statistics. This is the Fermi Einstein condensation. To corroborate the existence of centre sector transitions in gauge theories with matter, we study (at vanishing chemical potential) the interface tension in the three-dimensional Z2 gauge theory with Ising matter, the distribution of the Polyakov line in the four-dimensional SU(2)-Higgs model and devise a new type of order parameter which is designed to detect centre sector transitions. Our analytical and numerical findings lead us to conjecture a new state of cold, but dense matter in the hadronic phase for which Fermi Einstein condensation is realised.Comment: 51 pages, 32 figure
    corecore