500 research outputs found

    Postirradiation fiber debonding and pull-out in Sic-Sic composites *

    Get PDF
    Abstract The toughness of ceramic matrix composites is contributed by crack bridging, matrix crack deflection, fiber debonding and pull-out and other minor effects. Crack bridging relies on fibers being intact close to the crack tip, while pull-out toughening relies on the debonding and frictional characteristics of the fiber-matrix interface. The interface friction depends on the interface pressure (i.e., on misfit strains) and interface roughness. In this paper, a calculational model for postirradiation fiber debonding and pull-out toughness in Sic-Sic composites is presented. It is shown that fiber debonding and pull-out toughness in Sic-Sic composites vary significantly with neutron fluence and irradiation tem~rature, which is a direct wnsequen~ of the dependence of the misfit strain on these irradiation variables. I~t~uction Sic-Sic composites have been proposed for structural applications in fusion reactor first walls and blankets. The fracture toughness of these composites can be measured from work-of-fracture experiments, and can be theoreticafly determined by investigating the mechanisms of energy dissipation during composite failure. In addition to matrix toughness and matrix crack deflection, two other contributions are considered important in toughening SIC-SIC materials. First is the crack-tip bridging by intact fibers, which contributes a closure traction and lowers the stress intensity at the crack tip. This contribution is important in case of small cracks. The second contribution is caused by fiber debonding, fiber fracture and pull-out, which occurs at significant crack openings, thus involving * This material is based upon work supported by the US Department of Energy under award number DE-FGO3-91ER.54115. energy dissipation by interface friction. Fiber bridging, debonding and pull-out depend on the composite mismatch stresses, i.e., on misfit strains. Neutron irradiation alters the composite behavior in a complex fashion. In addition to basic property changes under irradiation, irradiation-induced swelling and creep change the mismatch stress state, which has a direct influence on the fracture strength and toughness of Sic-Sic composites. Detailed calculations of the time-evolution of mismatch stresses in Sic-Sic composites under high-temperature neutron irradiation are performed [l]. General inelastic wnstitutive equations for Sic fibers and SiC matrix, which are developed by the present authors 121 are used for that purpose. It is found that misfit strains change significantly during early irradiation, and that long-term changes depend on helium swelling and creep only, regardless of the initial thermal mismatch state. Accordingly, fiber debonding and pull-out behavior are expected to depend on the neutron fluence, In the present work, we calculate the postirradiation pull-out toughness and fiber debonding in Sic-Sic composites as functions of neutron fluence and irradiation temperature. 0022-3115/94/$07.00 0 1994 Elsevier Science B.V. All rights reserved SSDZ 0022-3115(94)00058-

    A Novel Quinazoline Inhibits Hsp90 Protein, EGFR and Induces Apoptosis in Leukemia Cells

    Get PDF
    The objective of the first part of this study was to investigate the Hsp90 protein possible activ ity of a novel quinazoline Her2/ EGFR inhibitor (Co mpound No. 1: 4-(2-(4-Oxo-2-thio xo-1,4-d ihydroquinazolin-3(2H)yl)ethyl)benzenesulfonamide) p reviously synthesized by a collaborating group. Heat shock protein 90 (Hsp90) has a central ro le in regulation of several client proteins involved in cancers [1,2]. Several Hsp90 inhibitors of the natural or synthetic origin d isplayed potent anticancer activity [3,4]. Accordingly, Hsp90 emerged as an attractive target in the design of anticancer agents. To evaluate the binding mode of compound No. 1 into the ATPase site of Hsp90, a co mparative mo lecular docking study was performed using AutoDock 4.2. The results of this studywas compared with that of the co-crystallized ligand (ATI-13387X, Onalespib). The energy minimization process of the chemical structures of No. 1 was done following our previous report [5]. The results of the docking study revealed that No. 1 fit n icely into the ATPase site, and it displayed a binding free energy (Gb) of-7.21 kcal/ mo l and inhibition constant (Ki) of 5.19 µM to Hsp90, co mpared to Gb of-7.90 kcal/ mol and Ki of 1.62 µM for ATI-13387X. Furthermore, to confirm this result, the surface plasmon resonance (SPR) was devised to test the Hsp90 inhibition activity of No.1, wh ich was 51 nM co mpared to Rad icico l and 17AA G (1.8 nM, and 360 nM; respectively). Overall, co mpound No. 1 exh ibited pro mising Hsp90 inhib iting activity. The second part of the study focused on the effect of No. 1, Dinaciclib and their co mbinationsin HL-60 leukemia cells. The comb ination showed synergistic EGFR inhib ition effect in HL-60 cells. Moreover, No. 1, Dinaciclib and their combination caused a significant increase in the Sub-G1 co mpared to control and doxorubicin (24h), at the expense of S and G2/M cell cycle phases. Cyclin D3, was consequently inhibited by each of the two drugs, and synergistically by their comb ination in HL-60 cells. Furthermore, each of the two drugs downregulated Survivin, wh ich was synergistically inhib ited by the co mbination. In conclusion, co mpound No.1, Dinaciclib and their comb inations showed synergestic EGFR inhibit ion; and pro-apoptoticeffect in HL-60 cells.This project was funded by the deanship of scientific research, Umm Alqura University, KSA (DSR: 15-M ED-3-1-0060). Keywords: Novel quinazoline EGFR inhi bi tor, Hs p90 protein, Leukemi a cells

    Ex vivo propagation in a novel 3D high-throughput co-culture system for multiple myeloma

    Get PDF
    PURPOSE: Multiple myeloma (MM) remains an incurable hematologic malignancy which ultimately develops drug resistance and evades treatment. Despite substantial therapeutic advances over the past years, the clinical failure rate of preclinically promising anti-MM drugs remains substantial. More realistic in vitro models are thus required to better predict clinical efficacy of a preclinically active compound. METHODS: Here, we report on the establishment of a conical agarose 3D co-culture platform for the preclinical propagation of primary MM cells ex vivo. Cell growth was compared to yet established 2D and liquid overlay systems. MM cell lines (MMCL: RPMI-8226, U266, OPM-2) and primary patient specimens were tested. Drug sensitivity was examined by exploring the cytotoxic effect of bortezomib and the deubiquitinase inhibitor auranofin under various conditions. RESULTS: In contrast to 2D and liquid overlay, cell proliferation in the 3D array followed a sigmoidal curve characterized by an initial growth delay but more durable proliferation of MMCL over 12 days of culture. Primary MM specimens did not expand in ex vivo monoculture, but required co-culture support by a human stromal cell line (HS-5, MSP-1). HS-5 induced a \u3e fivefold increase in cluster volume and maintained long-term viability of primary MM cells for up to 21 days. Bortezomib and auranofin induced less cytotoxicity under 3D vs. 2D condition and in co- vs. monoculture, respectively. CONCLUSIONS: This study introduces a novel model that is capable of long-term propagation and drug testing of primary MM specimens ex vivo overcoming some of the pitfalls of currently available in vitro models

    Sarcopenia, frailty and cachexia patients detected in a multisystem electronic health record database

    Get PDF
    Background: Sarcopenia, cachexia and frailty have overlapping features and clinical consequences, but often go unrecognized. The objective was to detect patients described by clinicians as having sarcopenia, cachexia or frailty within electronic health records (EHR) and compare clinical variables between cases and matched controls. Methods: We conducted a case-control study using retrospective data from the Indiana Network for Patient Care multi-health system database from 2016 to 2017. The computable phenotype combined ICD codes for sarcopenia, cachexia and frailty, with clinical note text terms for sarcopenia, cachexia and frailty detected using natural language processing. Cases with these codes or text terms were matched to controls without these codes or text terms matched on birth year, sex and race. Two physicians reviewed EHR for all cases and a subset of controls. Comorbidity codes, laboratory values, and other coded clinical variables were compared between groups using Wilcoxon matched-pair sign-rank test for continuous variables and conditional logistic regression for binary variables. Results: Cohorts of 9594 cases and 9594 matched controls were generated. Cases were 59% female, 69% white, and a median (1st, 3rd quartiles) age 74.9 (62.2, 84.8) years. Most cases were detected by text terms without ICD codes n = 8285 (86.4%). All cases detected by ICD codes (total n = 1309) also had supportive text terms. Overall 1496 (15.6%) had concurrent terms or codes for two or more of the three conditions (sarcopenia, cachexia or frailty). Of text term occurrence, 97% were used positively for sarcopenia, 90% for cachexia, and 95% for frailty. The remaining occurrences were negative uses of the terms or applied to someone other than the patient. Cases had lower body mass index, albumin and prealbumin, and significantly higher odds ratios for diabetes, hypertension, cardiovascular and peripheral vascular diseases, chronic kidney disease, liver disease, malignancy, osteoporosis and fractures (all p < 0.05). Cases were more likely to be prescribed appetite stimulants and caloric supplements. Conclusions: Patients detected with a computable phenotype for sarcopenia, cachexia and frailty differed from controls in several important clinical variables. Potential uses include detection among clinical cohorts for targeting recruitment for research and interventions

    A hepatitis B virus causes chronic infections in equids worldwide

    Get PDF
    Preclinical testing of novel therapeutics for chronic hepatitis B (CHB) requires suitable animal models. Equids host homologs of hepatitis C virus (HCV). Because coinfections of hepatitis B virus (HBV) and HCV occur in humans, we screened 2,917 specimens from equids from five continents for HBV. We discovered a distinct HBV species (Equid HBV, EqHBV) in 3.2% of donkeys and zebras by PCR and antibodies against EqHBV in 5.4% of donkeys and zebras. Molecular, histopathological, and biochemical analyses revealed that infection patterns of EqHBV resembled those of HBV in humans, including hepatotropism, moderate liver damage, evolutionary stasis, and potential horizontal virus transmission. Naturally infected donkeys showed chronic infections resembling CHB with high viral loads of up to 2.6 Ă— 109 mean copies per milliliter serum for >6 mo and weak antibody responses. Antibodies against Equid HCV were codetected in 26.5% of donkeys seropositive for EqHBV, corroborating susceptibility to both hepatitis viruses. Deltavirus pseudotypes carrying EqHBV surface proteins were unable to infect human cells via the HBV receptor NTCP (Na+/taurocholate cotransporting polypeptide), suggesting alternative viral entry mechanisms. Both HBV and EqHBV deltavirus pseudotypes infected primary horse hepatocytes in vitro, supporting a broad host range for EqHBV among equids and suggesting that horses might be suitable for EqHBV and HBV infections in vivo. Evolutionary analyses suggested that EqHBV originated in Africa several thousand years ago, commensurate with the domestication of donkeys. In sum, EqHBV naturally infects diverse equids and mimics HBV infection patterns. Equids provide a unique opportunity for preclinical testing of novel therapeutics for CHB and to investigate HBV/ HCV interplay upon coinfection

    The diacylglycerol kinase α/Atypical PKC/β1 integrin pathway in SDF-1α mammary carcinoma invasiveness

    Get PDF
    Diacylglycerol kinase α (DGKα), by phosphorylating diacylglycerol into phosphatidic acid, provides a key signal driving cell migration and matrix invasion. We previously demonstrated that in epithelial cells activation of DGKα activity promotes cytoskeletal remodeling and matrix invasion by recruiting atypical PKC at ruffling sites and by promoting RCP-mediated recycling of α5β1 integrin to the tip of pseudopods. In here we investigate the signaling pathway by which DGKα mediates SDF-1α-induced matrix invasion of MDA-MB-231 invasive breast carcinoma cells. Indeed we showed that, following SDF-1α stimulation, DGKα is activated and localized at cell protrusion, thus promoting their elongation and mediating SDF-1α induced MMP-9 metalloproteinase secretion and matrix invasion. Phosphatidic acid generated by DGKα promotes localization at cell protrusions of atypical PKCs which play an essential role downstream of DGKα by promoting Rac-mediated protrusion elongation and localized recruitment of β1 integrin and MMP-9. We finally demonstrate that activation of DGKα, atypical PKCs signaling and β1 integrin are all essential for MDA-MB-231 invasiveness. These data indicates the existence of a SDF-1α induced DGKα - atypical PKC - β1 integrin signaling pathway, which is essential for matrix invasion of carcinoma cells

    Global existence for a system of non-linear and non-local transport equations describing the dynamics of dislocation densities

    Get PDF
    In this paper, we study the global in time existence problem for the Groma-Balogh model describing the dynamics of dislocation densities. This model is a two-dimensional model where the dislocation densities satisfy a system of transport equations such that the velocity vector field is the shear stress in the material, solving the equations of elasticity. This shear stress can be expressed as some Riesz transform of the dislocation densities. The main tool in the proof of this result is the existence of an entropy for this syste

    Thymoma calcification: Is it clinically meaningful?

    Get PDF
    Among anterior mediastinal lesions, thymoma is the most common. Thymomas are tumors of thymic epithelial cell origin that are distinguished by inconsistent histological and biologic behavior. Chest imaging studies typically show a round or lobulated tumor in the anterior mediastinum. Calcifications in thymomas are classically punctuate or amorphous, positioned within the lesion. Chest computed tomography (CT) features suggesting higher risk thymoma consist of tumor heterogeneity, vascular involvement, lobulation, pulmonary nodules, lymphadenopathy, and pleural manifestations. Imaging findings have an imperfect ability to predict stage and prognosis for thymoma patients. Our objective is to highlight the clinical implications of thymoma calcifications on the diagnosis, clinical manifestation and prognosis. A pubmed and google search was performed using the following words: thymoma calcification, calcified thymus, mediastinal calcification, anterior mediastinal calcification, and calcified thymoma. After reviewing 370 articles, 32 eligible articles describing thymoma calcifications were found and included in this review. Although the presence of thymus calcifications was more common in patients with invasive thymomas, they were present in significant portion of non-invasive thymomas. The presence of calcifications was not a significant factor in differentiating between benign and malignant thymoma. As a result, the type, location, size or other characteristics of thymus gland calcifications were not relevant features in clinical and radiologic diagnosis of thymoma. The histopathological diagnosis is still the only possible way to confirm the neoplastic nature of thymoma. All types of thymomas should be evaluated and managed independently of the presence of calcifications
    • …
    corecore