13 research outputs found

    <em>Kelussiaodoratissima</em> Mozaff.as a rich source of essential fatty acids andphthalides

    Get PDF
    Abstract Introduction: The present study is the first assessment of the fatty acids of leaf and essential oil compositions of new three habitats of aerial parts of K. odoratissima. Methods: The aerial parts of K. odoratissima from the three habitats were dried. The essential oils were obtained by hydrodistillation for 3 h in a Clevenger-type apparatus, then the analysis of the components was carried out using gas chromatography&ndash;mass spectrometry. To study the oil yield and fatty acids, the dried leaves subjected to extraction in hexane by using Soxhlet Apparatus. To analyze fatty acids from the oil fractions by gas chromatography technique, the oil was subjected to transesterification to obtain the fatty acid methyl esters, which, were dissolved in hexane and subjected to GC analysis. Results: According to the results, a total of 43 components, the major constitutes of essential oil compositions were (Z)-Ligustilide (76.45), Unknown-A (4.47), (E)-Ligustilide (2.57), (Z)-Butylidene phthalide (2.37), 5-pentyl cyclohexa-1,3-diene (1.57) and Kessane (0.77) in K. odoratissima. The sixteen fatty acids were separated &nbsp;from the oil (5 yield per 100 g dry matter). Linoleic acid (25.46), &alpha;-Linolenic acid (16.66), Palmitic acid (11.92), Oleic acid (9.33), Stearic acid (4.72), Petroselinic acid (2.53), Arachidonic acid (2.51) and Erucic acid (1.76) were major fatty acids. Conclusion: Generally, K. odoratissima is a rich source of essential fatty acids and phthalide derivatives, specially (Z)-ligustilide. This study was presented valuable information about the phytochemical properties, which can be useful for the future researches on the pharmacological effects of K. odoratissima

    Flavonoids profile and antioxidant activity in flowers and leaves of hawthorn species (Crataegus spp.) from different regions of Iran

    Get PDF
    This study was undertaken to determine the total quantity of phenolic and flavonoids, as well as to find out about the HPLC quantification of some individual phenolic compounds (i.e. chlorogenic acid, vitexin 2"-O-rhamnoside, vitexin, rutin, hyperoside, quercetin, and isoquercetin) in flowers and leaves of 56 samples of different hawthorn species (Crataegus spp.) collected from different geographical regions of Iran. The amount of total phenolics ranges from 7.21 to 87.73 mg GAE/g in dry weight of the plant, and the total amount of flavonoids varied amongst species and in different plant organs ranging from 2.27 to 17.40 mg/g dry weight. Chlorogenic acid, vitexin, and vitexin 2"-O-rhamnoside were found to be the most abundant phenolic compounds in the extracts of hawthorn leaves. Meanwhile, chlorogenic acid, hyperoside, and rutin were the most abundant phenolic compounds in the extracts of hawthorn flowers in most genotypes. The antioxidant activity widely varied in species and in different organs of each individual plant, ranging from 0.9 to 4.65 mmol Fe++/g DW plant, calculated through the ferric-reducing antioxidant power (FRAP) method. Thus, this could provide valuable data for developing breeding strategies and plans; it can also help us in selecting genotypes with high phenolic contents for producing natural antioxidants and other bioactive compounds beneficial for food or the pharmaceutical industries

    modeling potential habitats for pergularia tomentosa using maximum entropy model and effect of environmental variables on its quantitative characteristics in arid rangelands southeastern iran

    Get PDF
    Predicting the potential habitat of plants in arid regions, especially for medicinal ones, is very important. Although Pergularia tomentosa is a key species for medicinal purposes, it appears in very low density in the arid rangelands of Iran, needing an urgent ecological attention. In this study, we modeled and predicted the potential habitat of P. tomentosa using maximum entropy, and the effects of environmental factors (geology, geomorphology, altitude, and soil properties) on some characteristics of the species were determined. The results showed that P. tomentosa was absent in igneous formation while it appeared in conglomerate formation. In addition, among geomorphological units, the best quantitative characteristics of P. tomentosa was belonged to the conglomerate formation-small hill area (plant aerial parts = 57.63 and root length = 30.68 cm) with the highest electrical conductivity, silt, and CaCO3 content. Conversely, the species was not found in the mountainous area with igneous formation. Moreover, plant density, length of roots, and aerial parts of the species were negatively correlated with soil sand, while positive correlation was observed with CaCO3, EC, potassium, and silt content. The maximum entropy was found to be a reliable method (ROC = 0.91) for predicting suitable habitats for P. tomentosa. These results suggest that in evaluating the plant's habitat suitability in arid regions, contrary to the importance of the topography, some environmental variables such as geomorphology and geology can play the main role in rangeland plants' habitat suitability

    Kelussia odoratissima Mozaff. as a rich source of essential fatty acids and phthalides

    No full text
    Introduction: The present study is the first assessment of the fatty acids of leaf and essential oil compositions of new three habitats of aerial parts of K. odoratissima. Methods: The aerial parts of K. odoratissima from the three habitats were dried. The essential oils were obtained by hydrodistillation for 3 h in a Clevenger-type apparatus, then the analysis of the components was carried out using gas chromatography–mass spectrometry. To study the oil yield and fatty acids, the dried leaves subjected to extraction in hexane by using Soxhlet Apparatus. To analyze fatty acids from the oil fractions by gas chromatography technique, the oil was subjected to transesterification to obtain the fatty acid methyl esters, which, were dissolved in hexane and subjected to GC analysis. Results: According to the results, a total of 43 components, the major constitutes of essential oil compositions were (Z)-Ligustilide (76.45%), Unknown-A (4.47%), (E)-Ligustilide (2.57%), (Z)-Butylidene phthalide (2.37%), 5-pentyl cyclohexa-1,3-diene (1.57%) and Kessane (0.77%) in K. odoratissima. The sixteen fatty acids were separated from the oil (5% yield per 100 g dry matter). Linoleic acid (25.46%), α-Linolenic acid (16.66%), Palmitic acid (11.92%), Oleic acid (9.33%), Stearic acid (4.72%), Petroselinic acid (2.53%), Arachidonic acid (2.51%) and Erucic acid (1.76%) were major fatty acids. Conclusion: Generally, K. odoratissima is a rich source of essential fatty acids and phthalide derivatives, specially (Z)-ligustilide. This study was presented valuable information about the phytochemical properties, which can be useful for the future researches on the pharmacological effects of K. odoratissima

    Optimization of ultrasonic Bath and cold plasma pre‐treatments in the spearmint essential oil isolation process

    No full text
    Abstract Spearmint essential oil (SEO), one of the economically valuable natural products, has special importance in the food, pharmaceutical, and perfumery industries due to its antifungal, antioxidant, and enzyme inhibitory properties. In this study, we optimized and evaluated the effect of three pre‐treatments on the extraction of SEO for quantity and quality: ultrasonic bath (UB), water to material ratio‐ultrasonic bath (W/M‐UB), and cold plasma‐ultrasonic bath (CP‐UB). Three experiments were designed using the central composite design (CCD) of response surface methodology (RSM). Experimental treatments included UB temperature (30–80°C) and time duration (1–30 min), cold plasma (CP) power (15–24 kV), and water/material ratio (10–40). Then, SEOs were extracted by hydro‐distillation using the Clevenger apparatus. The results showed that SEO yield in the optimal conditions of treatments was 119.7%, 206.6%, and 155.7% higher in UB, W/M‐UB, and CP‐UB pretreatments respectively, in comparison to control sample and optimized conditions were UB temperature: 37.3°C and UB time: 5.2 min at UB treatment, 33.9 of W/M ratio, 69.9°C of UB temperature and 6.9 min of UB time at W/M‐UB treatment and CP power: 22.176, UB temperature: 40.135 and UB time: 24.122 at CP‐UB treatment. Oxygenated monoterpenes were also higher in the essential oils (EOs) of all three treated plant materials. In conclusion, the SEO extraction yield improved by the application of the pretreatments in optimized conditions

    Cardenolide-rich fraction of Pergularia tomentosa as a novel Antiangiogenic agent mainly targeting endothelial cell migration

    No full text
    Purpose Angiogenesis related abnormalities underlie several life-threatening disorders. Despite approved therapies, scientists have yet to develop highly efficient, low cost approaches with minimal side effects.Methods We evaluated the antiangiogenic activity of 50% hydroalcoholic extracts of Pergularia tomentosa L. root and aerial parts along with their EtOAc and water fractions, in vivo and in vitro. Transgenic zebrafish line Tg(fli1:EGFP) was used for in vivo assay and human umbilical vein endothelial cell (HUVEC) migration test along with possibility of tube formation were performed as in vitro tests. Furthermore, microvasculature in chicken chorioallantoic membrane (CAM) was assessed under P. tomentosa treatment. The fractionation of the 50% hydroalcoholic extracts was led to the identification of the best active fraction in this study. The metabolite profiling of the active fraction was also carried out using LC-HRESIMS analysis.Results Pergularia tomentosa markedly inhibited intersegmental vessel (ISV) formation at 48 h post-fertilization (hpf) embryos in zebrafish. The water fraction of root hydroalcoholic extract (PtR2), showed strong antiangiogenic effect with minimal adverse viability impacts. Over 80% of embryos showed more than 50% inhibition in their ISV development at 20 and 40 mu g/mL. PtR2 at 20 mu g/mL substantially reduced human umbilical vein endothelial cell (HUVEC) migration up to 40%, considerable destruction of the formed tubes in the tube formation and microvasculature in CAM assays. Immunocytochemistry showed a marked reduction in vascular endothelial cadherin (VE-cadherin) abundance at cell junctions concurrent with substantial reduction of phospho-Akt (p-Akt) and beta-catenin protein expressions. Phytochemical profile of PtR2 showed a rich source of cardenolide structures, including ghalakinoside, calactin and calotropin derivatives.Conclusion Thus, the P. tomentosa cardenolide-rich fraction (PtR2) may hold a considerable promise for an antiangiogenic impact by impairment of endothelial cell (EC) migration and viability

    Antiproliferative Cardenolides from the Aerial Parts of Pergularia tomentosa

    No full text
    The LC-MS analysis of the MeOH extract of the aerial parts of Pergularia tomentosa led to the isolation of 23 compounds, of which the structures were elucidated unambiguously by NMR spectroscopic data analysis. Three new doubly linked cardenolides (4, 13, 14) along with several known cardenolides (1-3, 5, 7, 8, 15-23) and flavonol glycosides (6, 9-12) were identified. LC-HRESIMS analysis, in the negative-ionization mode, showed the absence of flavonoids in a methanol extract of the roots of P. tomentosa. On the basis of the antiproliferative activity reported for cardenolides, the isolated compounds were tested for their ability to decrease the cell viability of five different human cancer cell lines, PC3, HeLa, Calu-1, MCF-7, and U251MG, exhibiting IC 50 values ranging from 0.2 to 8.0 μM. Moreover, an S-phase entry assay was performed to investigate if the compounds could affect the cell cycle progression of PC3 prostate carcinoma cells. The results obtained demonstrated that the compounds 4, 7, and 14 at 1 μM considerably reduced the number of cells in the S-phase
    corecore