25 research outputs found

    Epidemiology of Coronavirus Disease Outbreak among Crewmembers on Cruise Ship, Nagasaki City, Japan, April 2020

    Get PDF
    In April 2020, a coronavirus disease (COVID-19) outbreak occurred on the cruise ship Costa Atlantica in Nagasaki, Japan. Our outbreak investigation included 623 multinational crewmembers onboard on April 20. Median age was 31 years; 84% were men. Each crewmember was isolated or quarantined in a single room inside the ship, and monitoring of health status was supported by a remote health monitoring system. Crewmembers with more severe illness were hospitalized. The investigation found that the outbreak started in late March and peaked in late April, resulting in 149 laboratory-confirmed and 107 probable cases of infection with severe acute respiratory syndrome coronavirus 2. Six case-patients were hospitalized for COVID-19 pneumonia, including 1 in severe condition and 2 who required oxygen administration, but no deaths occurred. Although the virus can spread rapidly on a cruise ship, we describe how prompt isolation and quarantine combined with a sensitive syndromic surveillance system can control a COVID-19 outbreak

    Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL

    Get PDF
    Photosystem II (PSII) is a huge membrane-protein complex consisting of 20 different subunits with a total molecular mass of 350 kDa for a monomer. It catalyses light-driven water oxidation at its catalytic centre, the oxygen-evolving complex (OEC). The structure of PSII has been analysed at 1.9 Å resolution by synchrotron radiation X-rays, which revealed that the OEC is a Mn4CaO5 cluster organized in an asymmetric, 'distorted-chair' form. This structure was further analysed with femtosecond X-ray free electron lasers (XFEL), providing the 'radiation damage-free' structure. The mechanism of O=O bond formation, however, remains obscure owing to the lack of intermediate-state structures. Here we describe the structural changes in PSII induced by two-flash illumination at room temperature at a resolution of 2.35 Å using time-resolved serial femtosecond crystallography with an XFEL provided by the SPring-8 ångström compact free-electron laser. An isomorphous difference Fourier map between the two-flash and dark-adapted states revealed two areas of apparent changes: around the QB/non-haem iron and the Mn4CaO5 cluster. The changes around the QB/non-haem iron region reflected the electron and proton transfers induced by the two-flash illumination. In the region around the OEC, a water molecule located 3.5 Å from the Mn4CaO5 cluster disappeared from the map upon two-flash illumination. This reduced the distance between another water molecule and the oxygen atom O4, suggesting that proton transfer also occurred. Importantly, the two-flash-minus-dark isomorphous difference Fourier map showed an apparent positive peak around O5, a unique μ4-oxo-bridge located in the quasi-centre of Mn1 and Mn4 (refs 4,5). This suggests the insertion of a new oxygen atom (O6) close to O5, providing an O=O distance of 1.5 Å between these two oxygen atoms. This provides a mechanism for the O=O bond formation consistent with that proposed previousl

    Bioprotective role of platelet-derived microvesicles in hypothermia:insight into the differential characteristics of peripheral and splenic platelets

    No full text
    Abstract Background: Most platelets are present in peripheral blood, but some are stored in the spleen. Because the tissue environments of peripheral blood vessels and the spleen are quite distinct, the properties of platelets present in each may also differ. However, no studies have addressed this difference. We previously reported that hypothermia activates splenic platelets, but not peripheral blood platelets, whose biological significance remains unknown. In this study, we focused on platelet-derived microvesicles (PDMVs) and analyzed their biological significance connected to intrasplenic platelet activation during hypothermia. Methods: C57Bl/6 mice were placed in an environment of −20 °C, and their rectal temperature was decreased to 15 °C to model hypothermia. Platelets and skeletal muscle tissue were collected and analyzed for their interactions. Results: Transcriptomic changes between splenic and peripheral platelets were greater in hypothermic mice than in normal mice. Electron microscopy and real-time RT-PCR analysis revealed that platelets activated in the spleen by hypothermia internalized transcripts, encoding tissue repairing proteins, into PDMVs and released them into the plasma. Plasma microvesicles from hypothermic mice promoted wound healing in the mouse myoblast cell line C2C12. Skeletal muscles in hypothermic mice were damaged but recovered within 24 h after rewarming. However, splenectomy delayed recovery from skeletal muscle injury after the mice were rewarmed. Conclusions: These results indicate that PDMVs released from activated platelets in the spleen play an important role in the repair of skeletal muscle damaged by hypothermia
    corecore