118 research outputs found

    Substitutional 4d and 5d Impurities in Graphene

    Full text link
    We describe the structural and electronic properties of graphene doped with substitutional impurities of 4d and 5d transition metals. The binding energy and distances for 4d and 5d metals in graphene show similar trends for the later groups in the periodic table, which is also well-known characteristic of 3d elements. However, along earlier groups the 4d impurities in graphene show very similar binding energies, distances and magnetic moments to 5d ones, which can be related to the influence of the 4d and 5d lanthanide contraction. Surprisingly, within the manganese group, the total magnetic moment of 3μB\mu_{B} for manganese is reduced to 1μB\mu_{B} for technetium and rhenium. We find that with compared with 3d elements, the larger size of the 4d and 5d elements causes a high degree hybridization with the neighbouring carbon atoms, reducing spin splitting in the d levels. It seems that the magnetic adjustment of graphene could be significantly different is 4d or 5d impurities are used instead of 3d impurities.Comment: 16 pages, 4 figure

    An Array of Layers in Silicon Sulfides: Chain-like and Ground State Structures

    Full text link
    While much is known about isoelectronic materials related to carbon nanostructures, such as boron nitride layers and nanotubes, rather less is known about equivalent silicon based materials. Following the recent discovery of phosphorene, we herein discuss isoelectronic silicon monosulfide monolayers. We describe a set of anisotropic ground state structures that clearly have a high stability with respect to the near isotropic silicon monosulfide monolayers. The source of the layer anisotropy is related to the presence of Si-S double chains linked by some Si-Si covalent bonds, which lye at the core of the increased stability, together with a remarkable spd hybridization on Si. The involvement of d orbitals brings more variety to silicon-sulfide based nanostructures that are isoelectronic to phosphorene, which could be relevant for future applications, adding extra degrees of freedom.Comment: 16 pages, 6 figure

    Ultrashort Mn-Mn Bonds in Organometallic Complexes

    Full text link
    Manganese metallocenes larger than the experimentally produced sandwiched MnBz2_2 compound are studied using several density functional theory methods. First, we show that the lowest energy structures have Mn clusters surrounded by benzene molecules, in so-called rice-ball structures. We then find a strikingly short bond length of 1.8 {\AA} between pairs of Mn atoms, accompanied by magnetism depletion. The ultrashort bond lengths are related to Bz molecules caging a pair of Mn atoms, leading to a Mn-Mn triple bond. This effect is also found when replacing benzenes by other molecules such as borazine or cyclopentadiene. The stability of the Mn-Mn bond for Mn2_2Bz2_2 is further investigated using dissociation energy curves. For each spin configuration, the energy versus distance plot shows different spin minima with barriers, which must be overcome to synthesize larger Mn-Bz complexes.Comment: 9 pages, 8 figure

    Structures and Stabilities of Doubly-charged (MgO)nMg2+ (n=1-29) Cluster Ions

    Get PDF
    Ab initio perturbed ion plus polarization calculations are reported for doubly-charged nonstoichiometric (MgO)nMg2+ (n=1-29) cluster ions. We consider a large number of isomers with full relaxations of the geometries, and add the correlation correction to the Hartree-Fock energies for all cluster sizes. The polarization contribution is included at a semiempirical level also for all cluster sizes. Comparison is made with theoretical results for neutral (MgO)n clusters and singly-charged alkali-halide cluster ions. Our method is also compared to phenomenological pair potential models in order to asses their reliability for calculations on small ionic systems. The large coordination-dependent polarizabilities of oxide anions favor the formation of surface sites, and thus bulklike structures begin to dominate only after n=24. The relative stabilities of the cluster ions against evaporation of a MgO molecule show variations that are in excellent agreement with the experimental abundance spectra.Comment: Final version accepted in Journal of Chemical Physics; 8 pages plus 8 figures (6 GIFs and 2 PSs). The main difference with respect to the original submission is the inclusion of coordination-dependent polarizabilities for oxide anions. That results in substantial changes in the result

    High Curie temperatures in (Ga,Mn)N from Mn clustering

    Full text link
    The effect of microscopic Mn cluster distribution on the Curie temperature (Tc) is studied using density-functional calculations. We find that the calculated Tc depends crucially on the microscopic cluster distribution, which can explain the abnormally large variations in experimental Tc values from a few K to well above room temperature. The partially dimerized Mn_2-Mn_1 distribution is found to give the highest Tc > 500 K, and in general, the presence of the Mn_2 dimer has a tendency to enhance Tc. The lowest Tc values close to zero are obtained for the Mn_4-Mn_1 and Mn_4-Mn_3 distributions.Comment: To appear in Applied Phyiscs Letter

    Electronic properties of graphene grain boundaries

    Get PDF
    Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.Grain boundaries and defect lines in graphene are intensively studied for their novel electronic and magnetic properties. However, there is not a complete comprehension of the appearance of localized states along these defects. Graphene grain boundaries are herein seen as the outcome of matching two semi-infinite graphene sheets with different edges. We classify the energy spectra of grain boundaries into three different types, directly related to the combination of the four basic classes of spectra of graphene edges. From the specific geometry of the grains, we are able to obtain the band structure and the number of localized states close to the Fermi energy. This provides a new understanding of states localized at grain boundaries, showing that they are derived from the edge states of graphene. Such knowledge is crucial for the ultimate tailoring of electronic and optoelectronic applications.This work was supported by the Polish National Science Center (grant DEC-2011/03/B/ST3/00091), the Basque Government through the NANOMATERIALS project (grant IE05-151) under the ETORTEK Program (iNanogune), the Spanish Ministerio de Ciencia y Tecnología (grants FIS2010-21282-C02-02, FIS2012-33521 and MONACEM projects), and the University of the Basque Country (grant no. IT-366-07).Peer Reviewe

    Structure and bonding in small neutral alkali halide clusters

    Get PDF
    Producción CientíficaThe structural and bonding properties of small neutral alkali halide clusters, (AX)_n with n<10, A=Li^+,Na^+,K^+,Rb^+, and X=F^-,Cl^-,Br^-,I^-, are studied using the ab initio perturbed ion (PI) model and a restricted structural relaxation criterion. A trend of competition between rocksalt and hexagonal ringlike isomers is found and discussed in terms of the relative ionic sizes. The main conclusion is that an approximate value of r_C /r_A=0.5 (where r_C and r_A are the cationic and anionic radii) separates the hexagonal from the rocksalt structures. The classical electrostatic part of the total energy at the equilibrium geometry is enough to explain these trends. The magic numbers in the size range studied are n=4, 6, and 9, and these are universal since they occur for all alkali halides and do not depend on the specific ground-state geometry. Instead those numbers allow for the formation of compact clusters. Full geometrical relaxations are considered for (LiF)_n (n=3 – 7) and (AX)_3 clusters, and the effect of Coulomb correlation is studied in a few selected cases. These two effects preserve the general conclusions achieved thus far
    • …
    corecore