433 research outputs found
Surface morphological evolutions on single crystal films by strong anisotropic drift-diffusion under the capillary and electromigration forces
The morphological evolution of voids at the unpassivated surfaces and the
sidewalls of the single crystal metallic films are investigated via computer
simulations by using the novel mathematical model developed by Ogurtani relying
on the fundamental postulates of irreversible thermodynamics. The effects of
the drift-diffusion anisotropy on the development of the surface morphological
scenarios are fully explored under the action of the electromigration (EM) and
capillary forces (CF), utilizing numerous combination of the surface textures
and the directions of the applied electric field. The interconnect failure time
due to the EM induced wedge shape internal voids and the incubation time of the
oscillatory surface waves, under the severe instability regimes, are deduced by
the novel renormalization procedures applied on the outputs of the computer
simulation experiments.Comment: 41 pages, 18 figures. related simulation movies utilizing numerous
combination of the surface texture, see
http://www.csl.mete.metu.edu.tr/aytac/thesis/movies/index.ht
Salient point region covariance descriptor for target tracking
Cataloged from PDF version of article.Features extracted at salient points are used to construct a
region covariance descriptor (RCD) for target tracking. In the classical
approach, the RCD is computed by using the features at each pixel
location, which increases the computational cost in many cases. This
approach is redundant because image statistics do not change significantly
between neighboring image pixels. Furthermore, this redundancy
may decrease tracking accuracy while tracking large targets because statistics
of flat regions dominate region covariance matrix. In the proposed
approach, salient points are extracted via the Shi and Tomasi’s minimum
eigenvalue method over a Hessian matrix, and the RCD features extracted
only at these salient points are used in target tracking. Experimental
results indicate that the salient point RCD scheme provides comparable
and even better tracking results compared to a classical RCD-based
approach, scale-invariant feature transform, and speeded-up robust
features-based trackers while providing a computationally more efficient
structure. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10
.1117/1.OE.52.2.027207
Development of a Fiber Laser with Independently Adjustable Properties for Optical Resolution Photoacoustic Microscopy
Photoacoustic imaging is based on the detection of generated acoustic waves through thermal expansion of tissue illuminated by short laser pulses. Fiber lasers as an excitation source for photoacoustic imaging have recently been preferred for their high repetition frequencies. Here, we report a unique fiber laser developed specifically for multiwavelength photoacoustic microscopy system. The laser is custom-made for maximum flexibility in adjustment of its parameters; pulse duration (5–10 ns), pulse energy (up to 10 μJ) and repetition frequency (up to 1 MHz) independently from each other and covers a broad spectral region from 450 to 1100 nm and also can emit wavelengths of 532, 355, and 266 nm. The laser system consists of a master oscillator power amplifier, seeding two stages; supercontinuum and harmonic generation units. The laser is outstanding since the oscillator, amplifier and supercontinuum generation parts are all-fiber integrated with custom-developed electronics and software. To demonstrate the feasibility of the system, the images of several elements of standardized resolution test chart are acquired at multiple wavelengths. The lateral resolution of optical resolution photoacoustic microscopy system is determined as 2.68 μm. The developed system may pave the way for spectroscopic photoacoustic microscopy applications via widely tunable fiber laser technologies
Development of a Fiber Laser with Independently Adjustable Properties for Optical Resolution Photoacoustic Microscopy
Photoacoustic imaging is based on the detection of generated acoustic waves through thermal expansion of tissue illuminated by short laser pulses. Fiber lasers as an excitation source for photoacoustic imaging have recently been preferred for their high repetition frequencies. Here, we report a unique fiber laser developed specifically for multiwavelength photoacoustic microscopy system. The laser is custom-made for maximum flexibility in adjustment of its parameters; pulse duration (5–10 ns), pulse energy (up to 10 μJ) and repetition frequency (up to 1 MHz) independently from each other and covers a broad spectral region from 450 to 1100 nm and also can emit wavelengths of 532, 355, and 266 nm. The laser system consists of a master oscillator power amplifier, seeding two stages; supercontinuum and harmonic generation units. The laser is outstanding since the oscillator, amplifier and supercontinuum generation parts are all-fiber integrated with custom-developed electronics and software. To demonstrate the feasibility of the system, the images of several elements of standardized resolution test chart are acquired at multiple wavelengths. The lateral resolution of optical resolution photoacoustic microscopy system is determined as 2.68 μm. The developed system may pave the way for spectroscopic photoacoustic microscopy applications via widely tunable fiber laser technologies
Probing the Free-carrier Absorption in Multi-Layer Black Phosphorus
We study the carrier relaxation dynamics in thin black phosphorus (bP) using
time-resolved differential transmission measurements. The inter-band and
intra-band transitions, relaxation, and carrier recombination lifetimes are
revealed by tuning the mid-infrared probe wavelength above and below the
bandgap of black phosphorus. When the probe energy exceeds the bandgap, Pauli
blocked inter-band transitions are observed. The differential transmission
signal changes sign from positive to negative when the probe energy is below
the bandgap, due to the absence of inter-band transitions and enhancement in
the free-carrier absorption (FCA). The minority carrier lifetime and radiative
recombination coefficient are estimated 1.3 ns, and 5.9
, respectively. The overall recombination lifetime of bP is
limited by radiative recombination for excess carrier densities larger than
5
Gratitude and Personality: A Meta-Analysis
The purpose of this study is to explore the relationship between gratitude and personality through a comprehensive review of existing research and a meta-analysis of findings on the correlation between gratitude and the Big Five personality dimensions
Versatile and scalable fabrication method for laser-generated focused ultrasound transducers
A versatile and scalable fabrication method for laser-generated focused ultrasound transducers is proposed. The method is based on stamping a coated negative mold onto polydimethylsiloxane, and it can be adapted to include different optical absorbers that are directly transferred or synthesized in situ. Transducers with a range of sizes down to 3 mm in diameter are presented, incorporating two carbonaceous (multiwalled carbon nanoparticles and candle soot nanoparticles) and one plasmonic (gold nanoparticles) optically absorbing component. The fabricated transducers operate at central frequencies in the vicinity of 10 MHz with bandwidths in the range of 15–20 MHz. A transducer with a diameter of 5 mm was found to generate a positive peak pressure greater than 35 MPa in the focal zone with a tight focal spot of 150 μm in lateral width. Ultrasound cavitation on the tip of an optical fiber was demonstrated in water for a transducer with a diameter as small as 3 mm
Modelling and measurement of laser-generated focused ultrasound: Can interventional transducers achieve therapeutic effects?
Laser-generated focused ultrasound (LGFU) transducers used for ultrasound therapy commonly have large diameters (6–15 mm), but smaller lateral dimensions (<4 mm) are required for interventional applications. To address the question of whether miniaturized LGFU transducers could generate sufficient pressure at the focus to enable therapeutic effects, a modelling and measurement study is performed. Measurements are carried out for both linear and nonlinear propagation for various illumination schemes and compared with the model. The model comprises several innovations. First, the model allows for radially varying acoustic input distributions on the surface of the LGFU transducer, which arise from the excitation light impinging on the curved transducer surfaces. This realistic representation of the source prevents the overestimation of the achievable pressures (shown here to be as high as 1.8 times). Second, an alternative inverse Gaussian illumination paradigm is proposed to achieve higher pressures; a 35% increase is observed in the measurements. Simulations show that LGFU transducers as small as 3.5 mm could generate sufficient peak negative pressures at the focus to exceed the cavitation threshold in water and blood. Transducers of this scale could be integrated with interventional devices, thereby opening new opportunities for therapeutic applications from inside the body
- …
