12 research outputs found

    PLC Virtualization and Software Defined Architectures in Industrial Control Systems

    Get PDF
    Today’s automation systems are going through a transition called Industry 4.0, referring to the Fourth Industrial Revolution. New concepts, such as cyber-physical systems, mi-croservices and Smart Factory are introduced. This brings up the question of how some of these new technologies can be utilized in Industrial Control Systems. Machines and production lines are nowadays controlled by hardware PLCs and this is considered as a state-of-the-art solution. However, the market demands are continuously increasing and pushing the industry e.g. to lower the operational costs and to develop more agile solutions. Industry 4.0 provides promising approaches to take a step forward and consider PLC virtualization. The purpose of this thesis was to evaluate PLC virtualization possibilities using different Software Defined Architectures. Requirements and benefits of different solutions were evaluated. The major objective of the case study was to compare container- and hypervisor-based virtualization solutions using Docker and KVM. The case study provides a modular and scalable IIoT solution in which a virtual PLC takes over the control instead of a hardware PLC. Node-RED was used as a runtime environment and an I/O-module was needed to set up a control loop test. Response time of the control loop was measured by capturing Modbus traffic with tcpdump. Multiple iterations were performed to show minimum, maximum, average, median and 90th pctl. latencies. The results indicate that the container-based solution has a smaller overhead than the hypervisor-based solution and it has a very little overhead in general. Peak latencies are a concern and even the average latencies show that this solution would not be suitable for any hard real-time or safety-related applications. Further investigation on the topic would be needed to estimate the actual potential of PLC virtualization on hard real-time applications. First of all, a more powerful hardware PC would be needed to perform such tests. Secondly, a faster industrial protocol than Modbus TCP/IP would be required. Perhaps another kind of approach would be needed to overcome the issues that were experienced in this case study. It would be interesting to test a direct communication between virtual PLC and I/O and use Node-RED nodes for example to trigger inputs. Anyhow, it seems that container-based solution is holding much promise as a virtualization approach

    Application of Solid Phase Extraction on Multiwalled Carbon Nanotubes of Some Heavy Metal Ions to Analysis of Skin Whitening Cosmetics Using ICP-AES

    Get PDF
    A novel and highly sensitive method for the determination of some heavy metals in skin whitening cosmetics creams using multiwalled carbon nanotubes MWCNTs as solid phase extraction sorbent for the preconcentration of these heavy metals prior to their determination by inductively coupled plasma atomic emission spectrometry is described. Different practical parameters have been thoroughly investigated and the optimum experimental conditions were employed. The developed method was then applied for the determination of arsenic, bismuth, cadmium, mercury, lead and titanium in samples of skin whitening cosmetics. The detection limits under these conditions for As, Bi, Cd, Pb, Hg and Ti were 2.4, 4.08, 0.3, 2.1, 1.8, and 1.8 ng·mL−1, respectively. The relative standard deviations (RSDs) were found to be less than 2.0%. For validation, a certified reference material of NIST SRM 1570a spinach leaves was analyzed and the determined values were in good agreement with the certified values. The recoveries for spiked samples were found to be in the range of 89.6–104.4%

    Novel Metal–Organic Framework (MOF) Based Composite Material for the Sequestration of U(VI) and Th(IV) Metal Ions from Aqueous Environment

    No full text
    The combination of magnetic nanoparticles and metal–organic frameworks (MOFs) has demonstrated their prospective for pollutant sequestration. In this work, a magnetic metal–organic framework nanocomposite (Fe<sub>3</sub>O<sub>4</sub>@AMCA-MIL53­(Al) was prepared and used for the removal of U­(VI) and Th­(IV) metal ions from aqueous environment. Fe<sub>3</sub>O<sub>4</sub>@AMCA-MIL53­(Al) nanocomposite was characterized by TGA, FTIR, SEM-EDX, XRD, HRTEM, BET, VSM (vibrating sample magnetometry), and XPS analyses. A batch technique was applied for the removal of the aforesaid metal ions using Fe<sub>3</sub>O<sub>4</sub>@AMCA-MIL53­(Al) at different operating parameters. The isotherm and kinetic data were accurately described by the Langmuir and pseudo-second-order models. The adsorption capacity was calculated to be 227.3 and 285.7 mg/g for U­(VI) and Th­(IV), respectively, by fitting the equilibrium data to the Langmuir model. The kinetic studies demonstrated that the equilibrium time was 90 min for each metal ion. Various thermodynamic parameters were evaluated which indicated the endothermic and spontaneous nature of adsorption. The collected outcomes showed that Fe<sub>3</sub>O<sub>4</sub>@AMCA-MIL53­(Al) was a good material for the exclusion of these metal ions from aqueous medium. The adsorbed metals were easily recovered by desorption in 0.01 M HCl. The excellent adsorption capacity and the response to the magnetic field made this novel material an auspicious candidate for environmental remediation technologies

    Sulfhydryl Functionalized Magnetic Chitosan as an Efficient Adsorbent for High-Performance Removal of Cd(II) from Water: Adsorption Isotherms, Kinetic, and Reusability Studies

    No full text
    In this study, dimercaptosuccinic acid-functionalized magnetic chitosan (Fe3O4@CS@DMSA) was synthesized via in situ coprecipitation process and amidation reaction, aiming to eliminate cadmium (Cd(II)) ions from an aqueous environment. The structure, morphology, and particle size of the Fe3O4@CS@DMSA adsorbent were investigated using FTIR, TEM, EDX, TGA, zeta potential, and XRD techniques, and the obtained results approved the successful synthesis of the Fe3O4@CS@DMSA nanocomposite. The influence of external adsorption conditions such as pH solution, adsorbent mass, initial Cd(II) concentration, temperature, and contact time on the adsorption process was successfully achieved. Accordingly, pH: 7.6, contact time: 210 min, and adsorbent mass:10 mg were found to be the optimal conditions for best removal. The adsorption was analyzed using nonlinear isotherm and kinetic models. The outcomes revealed that the adsorption process obeyed the Langmuir and the pseudo-first-order models. The maximum adsorption capacity of Fe3O4@CS@DMSA toward Cd(II) ion was 314.12 mg/g. The adsorption mechanism of Cd(II) on Fe3O4@CS@DMSA nanocomposite is the electrostatic interaction. The reusability test of Fe3O4@CS@DMSA nanocomposite exhibited that the adsorption efficiency was 72% after the 5th cycle. Finally, this research indicates that the Fe3O4@CS@DMSA exhibited excellent characteristics such as high adsorption capacity, effective adsorption-desorption results, and easy magnetic separation and thus could be an effective adsorbent for removing Cd(II) ions from aqueous solutions
    corecore