50 research outputs found

    Covalent Coercion by Legionella pneumophila

    Get PDF
    Adenylylation of Rab proteins appears to be an intriguing mechanism that Legionella pneumophila uses to modulate their activity during infection. Now the reverse reaction (deadenylylation) (Neunuebel et al., 2011; Tan and Luo, 2011) and a new posttranslational modification (phosphocholination) of Rab1 (Mukherjee et al., 2011) have been reported

    Atomic resolution structure of EhpR: phenazine resistance in Enterobacter agglomerans Eh1087 follows principles of bleomycin / mitomycin C resistance in other bacteria

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background The phenazines are redox-active secondary metabolites that a large number of bacterial strains produce and excrete into the environment. They possess antibiotic activity owing to the fact that they can reduce molecular oxygen to toxic reactive oxygen species. In order to take advantage of this activity, phenazine producers need to protect themselves against phenazine toxicity. Whereas it is believed that phenazine-producing pseudomonads possess highly active superoxide dismutases and catalases, it has recently been found that the plant-colonizing bacterium Enterobacter agglomerans expresses a small gene ehpR to render itself resistant towards D-alanyl-griseoluteic acid, the phenazine antibiotic produced by this strain. Results To understand the resistance mechanism installed by EhpR we have determined its crystal structure in the apo form at 2.15 Å resolution and in complex with griseoluteic acid at 1.01 Å, respectively. While EhpR shares a common fold with glyoxalase-I/bleomycin resistance proteins, the ligand binding site does not contain residues that some related proteins employ to chemically alter their substrates. Binding of the antibiotic is mediated by π-stacking interactions of the aromatic moiety with the side chains of aromatic amino acids and by a few polar interactions. The dissociation constant KD between EhpR and griseoluteic acid was quantified as 244 ± 45 ÎŒM by microscale thermophoresis measurements. Conclusions The data accumulated here suggest that EhpR confers resistance by binding D-alanyl-griseoluteic acid and acting as a chaperone involved in exporting the antibiotic rather than by altering it chemically. It is tempting to speculate that EhpR acts in concert with EhpJ, a transport protein of the major facilitator superfamily that is also encoded in the phenazine biosynthesis operon of E. agglomerans. The low affinity of EhpR for griseoluteic acid may be required for its physiological function.Peer Reviewe

    Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1

    Get PDF
    International audienceMutations in the PTEN-induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser 65) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1-dependent phosphorylation targets in HEK (human embry-onic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub-family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser 111) in response to PINK1 activation. Using phospho-specific antibodies raised against Ser 111 of each of the Rabs, we demonstrate that Rab Ser 111 phosphoryla-tion occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient-derived fibroblasts stimulated by mitochondrial depolari-sation. We provide evidence that Rab8A GTPase Ser 111 phosphory-lation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser 111 phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser 65. We further show mechanistically that phosphorylation at Ser 111 significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/ 8B/13 at Ser 111 may represent novel biomarkers of PINK1 activity in vivo. Our findings also suggest that disruption of Rab GTPase-mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson's disease

    Chaperone-assisted production of active human Rab8A GTPase in Escherichia coli

    No full text
    The guanine nucleotide binding protein Rab8A controls the final steps of exocytosis in mammalian cells. It has been implicated in the regulation of apical protein localization in intestinal epithelial cells and ciliary biogenesis. The in vitro structural and biochemical characterization of Rab8A and its interaction with regulator and effector molecules has been hampered by its insolubility in Escherichia coli expression systems. The conventional refolding procedure is laborious and yields only minute amounts of C-terminally truncated Rab8A (Rab8A1-183: amino acids 1–183), not the full-length protein. Here, we report a method of expressing soluble, hexahistidine-tagged full-length human Rab8A from E. coli. The Rab8A gene was codon-optimized and coexpressed with bacterial GroEL and GroES chaperones. After two-step purification by Ni2+ affinity chromatography and gel filtration, Rab8A was obtained at a yield of 4 mg protein per 1 L of bacterial cell culture and a purity of >95%. The resultant protein was functionally active, as determined by GTPase activity and its interaction with the nucleotide exchange factor MSS4

    Validation of Slow Off-Kinetics of Sirtuin Rearranging Ligands (SirReals) by Means of the Label-Free Electrically Switchable Nanolever Technology

    No full text
    Recently, we have discovered the sirtuin rearranging ligands (SirReals) as a novel class of highly potent and selective inhibitors of the NAD+-dependent lysine deacetylase Sirt2. In previous studies, using a biotinylated SirReal analogue in combination with biolayer interferometry, we observed a slow dissociation rate of the inhibitor-enzyme complex, which had been postulated to be the key to the high affinity and selectivity of SirReals. However, for the attachment of biotin to the SirReal core, we introduced a triazole as a linking moiety, which was shown by X-ray co-crystallography to interact with Arg97 of the cofactor binding loop. This study now is directed to answer the question, whether the observed long residence time of the SirReals is induced mainly by triazole incorporation or is an inherent characteristic of the SirReal inhibitor core. Therefore, we used the novel label-free switchSENSEÂź technology, based on electrically switchable DNA nanolevers, to validate that the long residence time of the SirReals is caused by the core scaffold.<br /

    Intermediates in the guanine nucleotide exchange reaction of Rab8 protein catalyzed by guanine nucleotide exchange factors Rabin8 and GRAB

    No full text
    Small G-proteins of the Ras superfamily control the temporal and spatial coordination of intracellular signaling networks by acting as molecular on/off switches. Guanine nucleotide exchange factors (GEFs) regulate the activation of these G-proteins through catalytic replacement of GDP by GTP. During nucleotide exchange, three distinct substrate·enzyme complexes occur: a ternary complex with GDP at the start of the reaction (G-protein·GEF·GDP), an intermediary nucleotide-free binary complex (G-protein·GEF), and a ternaryGTPcomplex after productive G-protein activation (G- protein·GEF·GTP). Here, we show structural snapshots of the full nucleotide exchange reaction sequence together with the G-protein substrates and products using Rabin8/GRAB (GEF) and Rab8 (G-protein) as a model system. Together with a thorough enzymatic characterization, our data provide a detailed view into the mechanism of Rabin8/GRAB-mediated nucleotide exchange

    Validation of the Slow Off‐Kinetics of Sirtuin‐Rearranging Ligands (SirReals) by Means of Label‐Free Electrically Switchable Nanolever Technology†

    Get PDF
    We have discovered the sirtuin‐rearranging ligands (SirReals) to be highly potent and selective inhibitors of the NAD+‐dependent lysine deacetylase Sirt2. Using a biotinylated SirReal in combination with biolayer interferometry, we previously observed a slow dissociation rate of the inhibitor–enzyme complex; this had been postulated to be the key to the high affinity and selectivity of SirReals. However, to attach biotin to the SirReal core, we introduced a triazole as a linking moiety; this was shown by X‐ray co‐crystallography to interact with Arg97 of the cofactor binding loop. Herein, we aim to elucidate whether the observed long residence time of the SirReals is induced mainly by triazole incorporation or is an inherent characteristic of the SirReal inhibitor core. We used the novel label‐free switchSENSE¼ technology, which is based on electrically switchable DNA nanolevers, to prove that the long residence time of the SirReals is indeed caused by the core scaffold

    Purification, crystallization and preliminary X-ray crystallographic analysis of mammalian MSS4–Rab8 GTPase protein complex

    No full text
    The MSS4 (mammalian suppressor of Sec4) protein in complex with nucleotide-free Rab8 GTPase has been purified and crystallized in a form suitable for structure analysis and a complete data set has been collected to 2 Å resolution
    corecore