23 research outputs found

    Structure and High Performance of Lead-Free (K0.5Na0.5)NbO3 Piezoelectric Nanofibers with Surface-induced Crystallization at Lowered Temperature

    Get PDF
    Lead-free potassium and sodium niobate (KNN) nanofiber webs with random and aligned configurations were prepared by electrospinning process from polymer-modified chemical solution. The crystallization process, structure, composition, dielectric, ferroelectric and piezoelectric properties of the nanofibers and nanofiber webs were investigated. Theoretical analysis and experimental results showed that the surface-induced heterogeneous nucleation resulted in the remarkable lower crystallization temperature for the KNN nanofibers with {100} orientation of the perovskite phase in contrast to the bulk KNN gel, and thus well-controlled chemical stoichiometry. Low dielectric loss, large electric polarization, and high piezoelectric performance were obtained in the nanofiber webs. In particular, the aligned nanofiber web exhibited further improved piezoelectric strain and voltage coefficients, and higher FOM than their thin film counterparts, promising for high performance electromechanical sensors and transducers applications

    New Triazoloquinoxaline Ligand and its Polymeric 1D Silver(I) complex Synthesis, Structure, and Antimicrobial activity

    Get PDF
    The organic ligand 4-Benzyl-1-(N,N-dimethylamino)-[1,2,4]triazolo[4,3a]quinoxaline 1 (L) and its polymeric silver(I) complex, [Ag2L(NO3)2]n (2), have been synthesized and characterized. The organic ligand 1 crystallizes in the triclinic space group P¯1. The unit cell contains two parallel-stacked molecules. The complex [Ag2L(NO3)2]n (2) crystallizes in the monoclinic space group P21/n. The structure contains two different silver(I) ions. Ag(2) is coordinated by three oxygens (involving two nitrate groups) and to a nitrogen of the triazole ring of 1. These ligands form a strongly distorted tetrahedral, nearly planar coordination sphere. Ag(1) has an approximately tetrahedral geometry. It is bonded to one oxygen of a nitrate anion and a nitrogen of two different L; this aspect giving rise to an infinite chain structure. A final bond to Ag(1) involves the carbon of a phenyl group. It is more weakly bonded to the phenyl carbons on either side of this, so that the Ag(1)-phenyl bonding has aspects of an Ag-allyl bond. Ag(1) and Ag(2) participate in bonding to a common nitrate anion and alternate, the two distinct modes of bridging between them lead to a zig-zag chain structure. In addition to spectroscopic studies, the biological activities of the ligand and of the complex were scanned over a wide range of Gram positive and Gram negative flesh- and bone-eating bacteria. The results are discussed in comparison with well-known antibiotics

    Seeing revolution non-linearly: www.filmingrevolution.org

    Get PDF
    Filming Revolution, launched in 2015, is an online interactive data base documentary tracing the strands and strains of independent (mostly) documentary filmmaking in Egypt since the revolution. Consisting of edited interviews with 30 filmmakers, archivists, activists, and artists based in Egypt, the website is organised by the themes that emerged from the material, allowing the viewer to engage in an unlimited set of “curated dialogues” about issues related to filmmaking in Egypt since 2011. With its constellatory interactive design, Filming Revolution creates as much as documents a community of makers, as it attempts to grapple with approaches to filmmaking in the wake of such momentous historical events. The non-hierarchical polysemous structure of the project is meant to echo the rhizomatic, open-ended aspect of the revolution and its aftermath, in yet another affirmation and instantiation of contemporary civil revolution as a non-linear, ever-unfolding, on-going, event

    Impact of safety-related dose reductions or discontinuations on sustained virologic response in HCV-infected patients: Results from the GUARD-C Cohort

    Get PDF
    BACKGROUND: Despite the introduction of direct-acting antiviral agents for chronic hepatitis C virus (HCV) infection, peginterferon alfa/ribavirin remains relevant in many resource-constrained settings. The non-randomized GUARD-C cohort investigated baseline predictors of safety-related dose reductions or discontinuations (sr-RD) and their impact on sustained virologic response (SVR) in patients receiving peginterferon alfa/ribavirin in routine practice. METHODS: A total of 3181 HCV-mono-infected treatment-naive patients were assigned to 24 or 48 weeks of peginterferon alfa/ribavirin by their physician. Patients were categorized by time-to-first sr-RD (Week 4/12). Detailed analyses of the impact of sr-RD on SVR24 (HCV RNA <50 IU/mL) were conducted in 951 Caucasian, noncirrhotic genotype (G)1 patients assigned to peginterferon alfa-2a/ribavirin for 48 weeks. The probability of SVR24 was identified by a baseline scoring system (range: 0-9 points) on which scores of 5 to 9 and <5 represent high and low probability of SVR24, respectively. RESULTS: SVR24 rates were 46.1% (754/1634), 77.1% (279/362), 68.0% (514/756), and 51.3% (203/396), respectively, in G1, 2, 3, and 4 patients. Overall, 16.9% and 21.8% patients experienced 651 sr-RD for peginterferon alfa and ribavirin, respectively. Among Caucasian noncirrhotic G1 patients: female sex, lower body mass index, pre-existing cardiovascular/pulmonary disease, and low hematological indices were prognostic factors of sr-RD; SVR24 was lower in patients with 651 vs. no sr-RD by Week 4 (37.9% vs. 54.4%; P = 0.0046) and Week 12 (41.7% vs. 55.3%; P = 0.0016); sr-RD by Week 4/12 significantly reduced SVR24 in patients with scores <5 but not 655. CONCLUSIONS: In conclusion, sr-RD to peginterferon alfa-2a/ribavirin significantly impacts on SVR24 rates in treatment-naive G1 noncirrhotic Caucasian patients. Baseline characteristics can help select patients with a high probability of SVR24 and a low probability of sr-RD with peginterferon alfa-2a/ribavirin

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p&lt;0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p&lt;0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Open-cell P(VDF-TrFE)/MWCNT nanocomposite foams with local piezoelectric and conductive effects for passive airborne sound absorption

    No full text
    Open-cell nanocomposite foams of poly(vinylidene fluoride-co-trifluoroethylene) [P(VDF-TrFE)] and multi-walled carbon nanotubes (MWCNTs) were investigated for airborne sound absorption. When MWCNTs were well dispersed in the P(VDF-TrFE) matrix, the degree of crystallinity of the polar phase of the polymer was enhanced, and hence, the local piezoelectric effect and the electrical conductivity varied by nearly seven orders of magnitude dependent on the amount of MWCNT loading. The measurements in a standard acoustic tube showed that introduction of an appropriate amount of MWCNTs significantly enhanced the airborne sound absorption coefficient of P(VDF-TrFE) foam without poling, particularly in the lower and intermediate frequency range (below 2 kHz), which is attributed to the local piezoelectric effect in the polar polymer matrix and charge dissipation through the conductive MWCNT interfacing the polar phase. The experimental results and data analysis indicate that the open-cell nanocomposite foam with an optimal combination of local piezoelectric effect and electrical conductivity is promising for noise mitigation applications with enhanced passive airborne sound absorption.Agency for Science, Technology and Research (A*STAR)Ministry of National Development (MND)National Research Foundation (NRF)Singapore Maritime Institute (SMI)Published versio

    Electrocatalytic Nitrite Determination Using Iron Phthalocyanine Modified Gold Nanoparticles

    Get PDF
    lectrochemical detection of nitrite was achieved via electrodeposition of gold nanoparticles (AuNPs) onto glassy carbon electrodes, followed by 3‐mercaptopropionic acid (MPA) self‐assembly, enabling attachment of an iron(III) monoamino‐phthalocyanine (FeMAPc) catalyst via amide bond formation. The use of scanning electron microscopy, energy dispersive X‐ray spectroscopy and ultraviolet‐visible spectroscopy realised surface characterisation while cyclic voltammetry and electrochemical impedance spectroscopy techniques were applied for electrochemical interrogation. The electrochemical behaviour of nitrite at the bare (GCE), AuNPs/GCE, FeMAPc/GCE and FeMAPc‐MPA/AuNPs/GCE was further scrutinised using differential pulse voltammetry in phosphate buffer solution (0.1 M PBS, pH 5.8). Overall the FeMAPc‐MPA/AuNPs/GCE resulted in sensitivity 14.5 nA/µM, which was double that of AuNPs/GCE, 2.4 times FeMAPc/GCE and 3.5 times the response at a bare GCE, with linear range 1.9 µM–2.04 mM (PBS, pH 5.8) and LOD 0.21 µM. An interference study revealed that the proposed sensor (FeMAPc‐MPA/AuNPs/GCE) exhibited a selective response in the presence of interfering anions and the analytical capability of the sensor was demonstrated via nitrite ion determination in real water samples
    corecore