4 research outputs found

    Discovery of Novel Herpes Simplexviruses in Wild Gorillas, Bonobos, and Chimpanzees Supports Zoonotic Origin of HSV-2

    Get PDF
    Viruses closely related to human pathogens can reveal the origins of human infectious diseases. Human herpes simplexvirus type 1 (HSV-1) and type 2 (HSV-2) are hypothesized to have arisen via host-virus codivergence and crossspecies transmission. We report the discovery of novel herpes simplexviruses during a large-scale screening of fecal samples from wild gorillas, bonobos, and chimpanzees. Phylogenetic analysis indicates that, contrary to expectation, simplexviruses from these African apes are all more closely related to HSV-2 than to HSV-1. Molecular clock-based hypothesis testing suggests the divergence between HSV-1 and the African great ape simplexviruses likely represents a codivergence event between humans and gorillas. The simplexviruses infecting African great apes subsequently experienced multiple cross-species transmission events over the past 3 My, the most recent of which occurred between humans and bonobos around 1 Ma. These findings revise our understanding of the origins of human herpes simplexviruses and suggest that HSV-2 is one of the earliest zoonotic pathogens

    Population dynamics and genetic connectivity in recent chimpanzee history

    Get PDF
    Knowledge on the population history of endangered species is critical for conservation, but whole-genome data on chimpanzees (<Pan troglodytes) is geographically sparse. Here, we produced the first non-invasive geolocalized catalog of genomic diversity by capturing chromosome 21 from 828 non-invasive samples collected at 48 sampling sites across Africa. The four recognized subspecies show clear genetic differentiation correlating with known barriers, while previously undescribed genetic exchange suggests that these have been permeable on a local scale. We obtained a detailed reconstruction of population stratification and fine-scale patterns of isolation, migration, and connectivity, including a comprehensive picture of admixture with bonobos (Pan paniscus). Unlike humans, chimpanzees did not experience extended episodes of long-distance migrations, which might have limited cultural transmission. Finally, based on local rare variation, we implement a fine-grained geolocalization approach demonstrating improved precision in determining the origin of confiscated chimpanzees

    Maximizing the acquisition of unique reads in non-invasive capture sequencing experiments

    No full text
    Non-invasive samples as a source of DNA are gaining interest in genomic studies of endangered species. However, their complex nature and low endogenous DNA content hamper the recovery of good quality data. Target capture has become a productive method to enrich the endogenous fraction of non-invasive samples, such as feces, but its sensitivity has not yet been extensively studied. Coping with fecal samples with an endogenous DNA content below 1% is a common problem when prior selection of samples from a large collection is not possible. However, samples classified as unfavorable for target capture sequencing might be the only representatives of unique specific geographical locations or to answer the question of interest. To explore how library complexity may be increased without repeating DNA extractions and generating new libraries, here we have captured the exome of 60 chimpanzees (Pan troglodytes) using fecal samples with very low proportions of endogenous content (< 1%). Our results indicate that by performing additional hybridizations of the same libraries, the molecular complexity can be maintained to achieve higher coverage. Also, whenever possible, the starting DNA material for capture should be increased. Lastly, we have specifically calculated the sequencing effort needed to avoid exhausting the library complexity of enriched fecal samples with low endogenous DNA content. This study provides guidelines, schemes and tools for laboratories facing the challenges of working with non-invasive samples containing extremely low amounts of endogenous DNA

    Recent genetic connectivity and clinal variation in chimpanzees

    Get PDF
    Much like humans, chimpanzees occupy diverse habitats and exhibit extensive behavioural variability. However, chimpanzees are recognized as a discontinuous species, with four subspecies separated by historical geographic barriers. Nevertheless, their range-wide degree of genetic connectivity remains poorly resolved, mainly due to sampling limitations. By analyzing a geographically comprehensive sample set amplified at microsatellite markers that inform recent population history, we found that isolation by distance explains most of the range-wide genetic structure of chimpanzees. Furthermore, we did not identify spatial discontinuities corresponding with the recognized subspecies, suggesting that some of the subspecies-delineating geographic barriers were recently permeable to gene flow. Substantial range-wide genetic connectivity is consistent with the hypothesis that behavioural flexibility is a salient driver of chimpanzee responses to changing environmental conditions. Finally, our observation of strong local differentiation associated with recent anthropogenic pressures portends future loss of critical genetic diversity if habitat fragmentation and population isolation continue unabated. Lester and colleagues use faecal samples and genetic analyses to investigate the genetic connectivity across chimpanzees. Their results indicate that the global pattern of genetic diversity in chimpanzees is largely characterized by a pattern of isolation by distance with several isolated populations exhibiting strong local differentiation
    corecore