23 research outputs found

    Longitudinal evaluation of cognitive functioning in young children with type 1 diabetes over 18 months

    Get PDF
    OBJECTIVE: Decrements in cognitive function may already be evident in young children with type 1 diabetes (T1D). Here we report prospectively acquired cognitive results over 18 months in a large cohort of young children with and without T1D. METHODS: 144 children with T1D (mean HbA1c: 7.9%) and 70 age-matched healthy controls (mean age both groups 8.5 years; median diabetes duration 3.9 yrs; mean age of onset 4.1 yrs) underwent neuropsychological testing at baseline and after 18-months of follow-up. We hypothesized that group differences observed at baseline would be more pronounced after 18 months, particularly in those T1D patients with greatest exposure to glycemic extremes. RESULTS: Cognitive domain scores did not differ between groups at the 18 month testing session and did not change differently between groups over the follow-up period. However, within the T1D group, a history of diabetic ketoacidosis (DKA) was correlated with lower Verbal IQ and greater hyperglycemia exposure (HbA1c area under the curve) was inversely correlated to executive functions test performance. In addition, those with a history of both types of exposure performed most poorly on measures of executive function. CONCLUSIONS: The subtle cognitive differences between T1D children and nondiabetic controls observed at baseline were not observed 18 months later. Within the T1D group, as at baseline, relationships between cognition (VIQ and executive functions) and glycemic variables (chronic hyperglycemia and DKA history) were evident. Continued longitudinal study of this T1D cohort and their carefully matched healthy comparison group is planned

    Transdifferentiation of pancreatic ductal cells to endocrine β-cells,”

    Get PDF
    Abstract The regenerative process in the pancreas is of particular interest, since diabetes, whether Type 1 or Type 2, results from an inadequate amount of insulin-producing β-cells. Islet neogenesis, or the formation of new islets, seen as budding of hormone-positive cells from the ductal epithelium, has long been considered to be one of the mechanisms of normal islet growth after birth and in regeneration, and suggested the presence of pancreatic stem cells. Results from the rat regeneration model of partial pancreatectomy led us to hypothesize that differentiated pancreatic ductal cells were the pancreatic progenitors after birth, and that with replication they regressed to a less differentiated phenotype and then could differentiate to form new acini and islets. There are numerous supportive results for this hypothesis of neogenesis, including the ability of purified primary human ducts to form insulin-positive cells budding from ducts. However, to rigorously test this hypothesis, we took a direct approach of genetically marking ductal cells using CAII (carbonic anhydrase II) as a duct-cell-specific promoter to drive Cre recombinase in lineage-tracing experiments using the Cre-Lox system. We show that CAII-expressing pancreatic cells act as progenitors that give rise to both new islets and acini after birth and after injury (ductal ligation). This identification of a differentiated pancreatic cell type as an in vivo progenitor for all differentiated pancreatic cell types has implications for a potential expandable source for new islets for replenishment therapy for diabetes either in vivo or ex vivo

    Cognitive functioning in young children with type 1 diabetes

    Get PDF
    OBJECTIVE: To assess cognitive functioning in children with type 1 diabetes (T1D) and examine whether glycemic history influences cognitive function. RESEARCH DESIGN AND METHODS: Neuropsychological evaluation of 216 children (healthy controls, n = 72; T1D, n = 144) ages 4-10yrs across five DirecNet sites. Cognitive domains included IQ, Executive Functions, Learning and Memory, and Processing Speed. Behavioral, mood, parental IQ data and T1D glycemic history since diagnosis were collected. RESULTS: The cohorts did not differ in age, gender or parent IQ. Median T1D duration was 2.5yrs and average onset age was 4yrs. After covarying age, gender, and parental IQ, the IQ and the Executive Functions domain scores trended lower (both p = .02, not statistically significant adjusting for multiple comparisons) with T1D relative to controls. Children with T1D were rated by parents as having more depressive and somatic symptoms (p < 0.001). Learning and memory (p = 0.46) and processing speed (p = 0.25) were similar. Trends in the data supported that the degree of hyperglycemia was associated with Executive Functions, and to a lesser extent, Child IQ and Learning and Memory. CONCLUSIONS: Differences in cognition are subtle in young children with T1D within 2 years of onset. Longitudinal evaluations will help determine whether these findings change or become more pronounced with time

    The risk of progression to type 1 diabetes is highly variable in individuals with multiple autoantibodies following screening

    Get PDF
    Aims/hypothesis: Young children who develop multiple autoantibodies (mAbs) are at very high risk for type 1 diabetes. We assessed whether a population with mAbs detected by screening is also at very high risk, and how risk varies according to age, type of autoantibodies and metabolic status. Methods: Type 1 Diabetes TrialNet Pathway to Prevention participants with mAbs (n = 1815; age, 12.35 ± 9.39 years; range, 1-49 years) were analysed. Type 1 diabetes risk was assessed according to age, autoantibody type/number (insulin autoantibodies [IAA], glutamic acid decarboxylase autoantibodies [GADA], insulinoma-associated antigen-2 autoantibodies [IA-2A] or zinc transporter 8 autoantibodies [ZnT8A]) and Index60 (composite measure of fasting C-peptide, 60 min glucose and 60 min C-peptide). Cox regression and cumulative incidence curves were utilised in this cohort study. Results: Age was inversely related to type 1 diabetes risk in those with mAbs (HR 0.97 [95% CI 0.96, 0.99]). Among participants with 2 autoantibodies, those with GADA had less risk (HR 0.35 [95% CI 0.22, 0.57]) and those with IA-2A had higher risk (HR 2.82 [95% CI 1.76, 4.51]) of type 1 diabetes. Those with IAA and GADA had only a 17% 5 year risk of type 1 diabetes. The risk was significantly lower for those with Index60 <1.0 (HR 0.23 [95% CI 0.19, 0.30]) vs those with Index60 values ≥1.0. Among the 12% (225/1815) ≥12.0 years of age with GADA positivity, IA-2A negativity and Index60 <1.0, the 5 year risk of type 1 diabetes was 8%. Conclusions/interpretation: Type 1 diabetes risk varies substantially according to age, autoantibody type and metabolic status in individuals screened for mAbs. An appreciable proportion of older children and adults with mAbs appear to have a low risk of progressing to type 1 diabetes at 5 years. With this knowledge, clinical trials of type 1 diabetes prevention can better target those most likely to progress

    A self-guided curriculum on endocrinology standard of care for gender diverse youth, including ethical considerations

    No full text
    Objective: While the field of pediatric endocrinology, and the American Board of Pediatrics, continues expanding training to include gender-affirming care, many pediatric endocrinology fellowship programs do not have formal curriculum for this patient population. Members of the Pediatric Endocrine Society (PES) that have a special interest in transgender health designed a curriculum based on Endocrine Society practice guidelines to expand the knowledge of gender affirming care for medical trainees' and faculty. Methods: PES members designed a 5-part self-guided educational module series with embedded knowledge questions. Uniquely, medical ethical reflections were included within each module. Participants completed baseline demographic and baseline and follow-up knowledge surveys. Results: Most participants were pediatric endocrinology fellows and 44 % percent (n = 21) completed all study components, including the follow up knowledge survey. Knowledge question data analysis demonstrated knowledge gained in medical management of pubertal youth and surgical interventions. Conclusion: This is the first medical education curriculum in gender-affirming care created by pediatric endocrinologists grounded in the Endocrine Society practice guidelines. This study demonstrates medical knowledge gained in caring for gender diverse youth and is the first to incorporate ethical considerations for this patient population. While initially designed for pediatric endocrinology trainees and faculty, this curriculum may be of great utility for any provider interested in caring for gender diverse youth
    corecore