6 research outputs found
Studying Tumor Angiogenesis and Cancer Invasion in a Three-Dimensional Vascularized Breast Cancer Micro-Environment.
Metastatic breast cancer is one of the deadliest forms of malignancy, primarily driven by its characteristic micro-environment comprising cancer cells interacting with stromal components. These interactions induce genetic and metabolic alterations creating a conducive environment for tumor growth. In this study, a physiologically relevant 3D vascularized breast cancer micro-environment is developed comprising of metastatic MDA-MB-231 cells and human umbilical vein endothelial cells loaded in human dermal fibroblasts laden fibrin, representing the tumor stroma. The matrix, as well as stromal cell density, impacts the transcriptional profile of genes involved in tumor angiogenesis and cancer invasion, which are hallmarks of cancer. Cancer-specific canonical pathways and activated upstream regulators are also identified by the differential gene expression signatures of these composite cultures. Additionally, a tumor-associated vascular bed of capillaries is established exhibiting dilated vessel diameters, representative of in vivo tumor physiology. Further, employing aspiration-assisted bioprinting, cancer-endothelial crosstalk, in the form of collective angiogenesis of tumor spheroids bioprinted at close proximity, is identified. Overall, this bottom-up approach of tumor micro-environment fabrication provides an insight into the potential of in vitro tumor models and enables the identification of novel therapeutic targets as a preclinical drug screening platform
Comparative Effects of Basic Fibroblast Growth Factor Delivery or Voluntary Exercise on Muscle Regeneration after Volumetric Muscle Loss.
Volumetric muscle loss (VML) is associated with irreversibly impaired muscle function due to traumatic injury. Experimental approaches to treat VML include the delivery of basic fibroblast growth factor (bFGF) or rehabilitative exercise. The objective of this study was to compare the effects of spatially nanopatterned collagen scaffold implants with either bFGF delivery or in conjunction with voluntary exercise. Aligned nanofibrillar collagen scaffold bundles were adsorbed with bFGF, and the bioactivity of bFGF-laden scaffolds was examined by skeletal myoblast or endothelial cell proliferation. The therapeutic efficacy of scaffold implants with either bFGF release or exercise was examined in a murine VML model. Our results show an initial burst release of bFGF from the scaffolds, followed by a slower release over 21 days. The released bFGF induced myoblast and endothelial cell proliferation in vitro. After 3 weeks of implantation in a mouse VML model, twitch force generation was significantly higher in mice treated with bFGF-laden scaffolds compared to bFGF-laden scaffolds with exercise. However, myofiber density was not significantly improved with bFGF scaffolds or voluntary exercise. In contrast, the scaffold implant with exercise induced more re-innervation than all other groups. These results highlight the differential effects of bFGF and exercise on muscle regeneration
3D Printing of PDMS Improves Its Mechanical and Cell Adhesion Properties
Despite
extensive use of polydimethylsiloxane (PDMS) in medical
applications, such as lab-on-a-chip or tissue/organ-on-a-chip devices,
point-of-care devices, and biological machines, the manufacturing
of PDMS devices is limited to soft-lithography and its derivatives,
which prohibits the fabrication of geometrically complex shapes. With
the recent advances in three-dimensional (3D) printing, use of PDMS
for fabrication of such complex shapes has gained considerable interest.
This research presents a detailed investigation on printability of
PDMS elastomers over three concentrations for mechanical and cell
adhesion studies. The results demonstrate that 3D printing of PDMS
improved the mechanical properties of fabricated samples up to three
fold compared to that of cast ones because of the decreased porosity
of bubble entrapment. Most importantly, 3D printing facilitates the
adhesion of breast cancer cells, whereas cast samples do not allow
cellular adhesion without the use of additional coatings such as extracellular
matrix proteins. Cells are able to adhere and grow in the grooves
along the printed filaments demonstrating that 3D printed devices
can be engineered with superior cell adhesion qualities compared to
traditionally manufactured PDMS devices
Squid Ring Teeth–coated Mesh Improves Abdominal Wall Repair
Background:. Hernia repair is a common surgical procedure with polypropylene (PP) mesh being the standard material for correction because of its durability. However, complications such as seroma and pain are common, and repair failures still approach 15% secondary to poor tissue integration. In an effort to enhance mesh integration, we evaluated the applicability of a squid ring teeth (SRT) protein coating for soft-tissue repair in an abdominal wall defect model. SRT is a biologically derived high-strength protein with strong mechanical properties. We assessed tissue integration, strength, and biocompatibility of a SRT-coated PP mesh in a first-time pilot animal study.
Methods:. PP mesh was coated with SRT (SRT-PP) and tested for mechanical strength against uncoated PP mesh. Cell proliferation and adhesion studies were performed in vitro using a 3T3 cell line. Rats underwent either PP (n = 3) or SRT-PP (n = 6) bridge mesh implantation in an anterior abdominal wall defect model. Repair was assessed clinically and radiographically, with integration evaluated by histology and mechanical testing at 60 days.
Results:. Cell proliferation was enhanced on SRT-PP mesh. This was corroborated in vivo by abdominal wall histology, dramatically diminished craniocaudal mesh contraction, improved strength testing, and higher tissue failure strain. There was no increase in seroma or visceral adhesion formation. No foreign body reactions were noted on liver histology.
Conclusions:. SRT applied as a coating appears to augment mesh–tissue integration and improve abdominal wall stability following bridged repair. Further studies in larger animals will determine its applicability for hernia repair in patients
Recent advances in bioprinting technologies for engineering cardiac tissue
Annually increasing incidence of cardiac-related disorders and cardiac tissue's minimal regenerative capacity have motivated the researchers to explore effective therapeutic strategies. In the recent years, bioprinting technologies have witnessed a great wave of enthusiasm and have undergone steady advancements over a short period, opening the possibilities for recreating engineered functional cardiac tissue models for regenerative and diagnostic applications. With this perspective, the current review delineates recent developments in the sphere of engineered cardiac tissue fabrication, using traditional and advanced bioprinting strategies. The review also highlights different printing ink formulations, available cellular opportunities, and aspects of personalized medicines in the context of cardiac tissue engineering and bioprinting. On a concluding note, current challenges and prospects for further advancements are also discussed