23 research outputs found

    Sensing with Polarized LIDAR in Degraded Visibility Conditions Due to Fog and Low Clouds

    No full text
    LIDAR (Light Detection and Ranging) sensors are one of the leading technologies that are widely considered for autonomous navigation. However, foggy and cloudy conditions might pose a serious problem for a wide adoption of their use. Polarization is a well-known mechanism often applied to improve sensors’ performance in a dense atmosphere, but is still not commonly applied, to the best of our knowledge, in self-navigated devices. This article explores this issue, both theoretically and experimentally, and focuses on the dependence of the expected performance on the atmospheric interference type. We introduce a model which combines the well-known LIDAR equation with Stocks vectors and the Mueller matrix formulations in order to assess the magnitudes of the true target signal loss as well as the excess signal that arises from the scattering medium radiance, by considering the polarization state of the E–M (Electro-Magnetic) waves. Our analysis shows that using the polarization state may recover some of the poor performance of such systems for autonomous platforms in low visibility conditions, but it depends on the atmospheric medium type. This conclusion is supported by measurements held inside an aerosol chamber within a well-controlled and monitored artificial degraded visibility atmospheric environment. The presented analysis tool can be used for the optimization of design and trade-off analysis of LIDAR systems, which allow us to achieve the best performance for self-navigation in all weather conditions

    Fog Measurements with IR Whole Sky Imager and Doppler Lidar, Combined with In Situ Instruments

    No full text
    This study describes comprehensive measurements performed for four consecutive nights during a regional-scale radiation fog event in Israel’s central and southern areas in January 2021. Our data included both in situ measurements of droplets size distribution, visibility range, and meteorological parameters and remote sensing with a thermal IR Whole Sky Imager and a Doppler Lidar. This work is the first extensive field campaign aimed to characterize fog properties in Israel and is a pioneer endeavor that encompasses simultaneous remote sensing measurements and analysis of a fog event with a thermal IR Whole Sky Imager. Radiation fog, as monitored by the sensor’s field of view, reveals three distinctive properties that make it possible to identify it. First, it exhibits an azimuthal symmetrical shape during the buildup phase. Second, the zenith brightness temperature is very close to the ground-level air temperature. Lastly, the rate of increase in cloud cover up to a completely overcast sky is very fast. Additionally, we validated the use of a Doppler Lidar as a tool for monitoring fog by proving that the measured backscatter-attenuation vertical profile agrees with the calculation of the Lidar equation fed with data measured by in situ instruments. It is shown that fog can be monitored by those two, off-the-shelf-stand-off-sensing technologies that were not originally designed for fog purposes. It enables the monitoring of fog properties such as type, evolution with time and vertical depth, and opens the path for future works of studying the different types of fog events

    Longwave radiative effect of the cloud twilight zone

    No full text
    Clouds play a key role in Earth’s radiation budget, covering more than 50% of the planet. However, the binary delineation of cloudy and clear sky is not clearly defined due to the presence of a transitionary zone, known as the cloud twilight zone, consisting of liquid droplets and humidified to dry aerosols. The twilight zone is an inherent component of cloud fields, yet its influence on longwave-infrared radiation remains unknown. Here we analyse spectral data from global satellite observations of shallow cloud fields over the ocean to estimate a lower bound on the twilight zone’s effect on longwave radiation. We find that the average longwave radiative effect of the twilight zone is ~0.75 W m–2, which is equivalent to the radiative forcing from increasing atmospheric CO2 by 75 ppm. We also find that the twilight zone in the longwave occupies over 60% of the apparent clear sky within the analysed low-level cloud fields. As low-level clouds are relatively warm, the overall longwave radiative contribution from the twilight zone is likely to be higher. We suggest that the twilight zone needs to be accounted for to accurately quantify cloud radiative effects and close the global energy budget

    Profiling the Planetary Boundary Layer Wind with a StreamLine XR Doppler LiDAR: Comparison to In-Situ Observations and WRF Model Simulations

    No full text
    Halo-Photonics StreamLine XR Doppler LiDAR measurements are performed using several scan configurations (Velocity Azimuth Display-VAD and Doppler Beam Swing-DBS) and elevation angles of 60° and 80°. The measurements are compared to wind observations conducted by various in situ instruments (tethered balloon, meteorological mast, and radiosondes). Good agreement is obtained, with R2 over 0.90 for wind speed and a standard error ≤ 18.6° for wind direction. The best performance was attained for lower elevation scans (60°), which is consistent with the higher spatial horizontal homogeneity exhibited by lower angle scans. VAD and DBS scans performed almost equally well with slight advantage for VAD in higher altitudes and for DBS for lower altitudes. The boundary layer structure along a diurnal cycle is analyzed by utilizing retrieved backscatter data and wind measurements in conjunction with Weather Research and Forecast (WRF) simulations. The presence of multiple inversions which allow the coexistence of different layers within the studied profile is also verified using data acquired by several radiosondes. Synergic use of LiDAR data with WRF simulations for low SNR regions is demonstrated

    Molecular Profiling-Selected Therapy for Treatment of Advanced Pancreaticobiliary Cancer: A Retrospective Multicenter Study

    Get PDF
    This multicenter cohort study assessed the impact of molecular profiling (MP) on advanced pancreaticobiliary cancer (PBC). The study included 30 patients treated with MP-guided therapy after failing ≥1 therapy for advanced PBC. Treatment was considered as having benefit for the patient if the ratio between the longest progression-free survival (PFS) on MP-guided therapy and the PFS on the last therapy before MP was ≥1.3. The null hypothesis was that ≤15% of patients gain such benefit. Overall, ≥1 actionable (i.e., predictive of response to specific therapies) biomarker was identified/patient. Immunohistochemistry (the most commonly used method for guiding treatment decisions) identified 1–6 (median: 4) actionable biomarkers per patient. After MP, patients received 1–4 (median: 1) regimens/patient (most commonly, FOLFIRI/XELIRI). In a decision-impact analysis, of the 27 patients for whom treatment decisions before MP were available, 74.1% experienced a treatment decision change in the first line after MP. Twenty-four patients were evaluable for clinical outcome analysis; in 37.5%, the PFS ratio was ≥1.3. In one-sided exact binomial test versus the null hypothesis, P = 0.0015; therefore, the null hypothesis was rejected. In conclusion, our analysis demonstrated the feasibility, clinical decision impact, and potential clinical benefits of MP-guided therapy in advanced PBC
    corecore