13 research outputs found
Modeling Neural Immune Signaling of Episodic and Chronic Migraine Using Spreading Depression In Vitro
Migraine and its transformation to chronic migraine are healthcare burdens in need of improved treatment options. We seek to define how neural immune signaling modulates the susceptibility to migraine, modeled in vitro using spreading depression (SD), as a means to develop novel therapeutic targets for episodic and chronic migraine. SD is the likely cause of migraine aura and migraine pain. It is a paroxysmal loss of neuronal function triggered by initially increased neuronal activity, which slowly propagates within susceptible brain regions. Normal brain function is exquisitely sensitive to, and relies on, coincident low-level immune signaling. Thus, neural immune signaling likely affects electrical activity of SD, and therefore migraine. Pain perception studies of SD in whole animals are fraught with difficulties, but whole animals are well suited to examine systems biology aspects of migraine since SD activates trigeminal nociceptive pathways. However, whole animal studies alone cannot be used to decipher the cellular and neural circuit mechanisms of SD. Instead, in vitro preparations where environmental conditions can be controlled are necessary. Here, it is important to recognize limitations of acute slices and distinct advantages of hippocampal slice cultures. Acute brain slices cannot reveal subtle changes in immune signaling since preparing the slices alone triggers: pro-inflammatory changes that last days, epileptiform behavior due to high levels of oxygen tension needed to vitalize the slices, and irreversible cell injury at anoxic slice centers
Recommended from our members
IFNγ-stimulated dendritic cell extracellular vesicles can be nasally administered to the brain and enter oligodendrocytes
Extracellular vesicles secreted from IFNγ-stimulated rat dendritic cells (referred to here as IFNγ-DC-EVs) contain miRNAs which promote myelination (including but not limited to miR-219), and preferentially enter oligodendrocytes in brain slice cultures. IFNγ-DC-EVs also increase myelination when nasally administered to naïve rats. While we can infer that these extracellular vesicles enter the CNS from functional studies, here we demonstrate biodistribution throughout the brain after nasal delivery by way of imaging studies. After nasal administration, Xenolight DiR-labelled IFNγ-DC-EVs were detected 30 minutes later throughout the brain and the cervical spinal cord. We next examined cellular uptake of IFNγ-DC-EVs by transfecting IFNγ-DC-EVs with mCherry mRNA prior to nasal administration. mCherry-positive cells were found along the rostrocaudal axis of the brain to the brainstem. These cells morphologically resembled oligodendrocytes, and indeed cell-specific co-staining for neurons, astrocytes, microglia and oligodendrocytes showed that mcherry positive cells were predominantly oligodendrocytes. This is in keeping with our prior in vitro results showing that IFNγ-DC-EVs are preferentially taken up by oligodendrocytes, and to a lesser extent, microglia. To confirm that IFNγ-DC-EVs delivered cargo to oligodendrocytes, we quantified protein levels of miR-219 mRNA targets expressed in oligodendrocyte lineage cells, and found significantly reduced expression. Finally, we compared intranasal versus intravenous delivery of Xenolight DiR-labelled IFNγ-DC-EVs. Though labelled IFNγ-DC-EVs entered the CNS via both routes, we found that nasal delivery more specifically targeted the CNS with less accumulation in the liver. Taken together, these data show that intranasal administration is an effective route for delivery of IFNγ-DC-EVs to the CNS, and provides additional support for their development as an EV-based neurotherapeutic that, for the first time, targets oligodendrocytes.</p
Potential functional applications of extracellular vesicles: a report by the NIH Common Fund Extracellular RNA Communication Consortium
The NIH Extracellular RNA Communication Program's initiative on clinical utility of extracellular RNAs and therapeutic agents and developing scalable technologies is reviewed here. Background information and details of the projects are presented. The work has focused on modulation of target cell fate by extracellular vesicles (EVs) and RNA. Work on plant-derived vesicles is of intense interest, and non-mammalian sources of vesicles may represent a very promising source for different therapeutic approaches. Retro-viral-like particles are intriguing. Clearly, EVs share pathways with the assembly machinery of several other viruses, including human endogenous retrovirals (HERVs), and this convergence may explain the observation of viral-like particles containing viral proteins and nucleic acid in EVs. Dramatic effect on regeneration of damaged bone marrow, renal, pulmonary and cardiovascular tissue is demonstrated and discussed. These studies show restoration of injured cell function and the importance of heterogeneity of different vesicle populations. The potential for neural regeneration is explored, and the capacity to promote and reverse neoplasia by EV exposure is described. The tremendous clinical potential of EVs underlies many of these projects, and the importance of regulatory issues and the necessity of general manufacturing production (GMP) studies for eventual clinical trials are emphasized. Clinical trials are already being pursued and should expand dramatically in the near future