11 research outputs found

    LIMPRINT study - the Turkish experience

    Get PDF
    Background: Lymphedema and chronic oedema is a major healthcare problem in both developed and non-developed countries The LIMPRINT study is an international health service based study to determine the prevalence and functional impact in adult populations of member countries of the International Lymphoedema Framework (ILF). Methods: 1051 patients from 8 centers in Turkey were recruited using the LIMPRINT study protocol. Data were collected using the core and module tools which assess the demographic and clinical properties as well as disability and QoL. Results: Most of the Turkish patients were recruited from specialist lymphedema services and were found to be female, housewives and having secondary lymphedema due to cancer treatment. The duration of lymphedema was commonly less than 5 years and most of them had ISL Grade 2 lymphedema. Cellulitis, infection and wounds were uncommon. The majority of patients did not get any treatment or advice before. Most of the patients had impaired QoL and decreased functionality, but psychological support was neglected. Although most had social health security access to Lymphedema centres nevertheless access seemed difficult due to distance and cost. Conclusion: The study has shown the current status and characteristics of lymphedema patients, treatment conditions, the unmet need for the diagnosis and treatment as well as burden of the disease in both patients and families in Turkey. National health policies are needed for the prevention, diagnosis and treatment in Turkey that utilise this informative data

    A study of photomodulated reflectance on staircase-like, n-doped GaAs/Al (x) Ga1-x As quantum well structures

    No full text
    In this study, photomodulated reflectance (PR) technique was employed on two different quantum well infrared photodetector (QWIP) structures, which consist of n-doped GaAs quantum wells (QWs) between undoped Al (x) Ga1-x As barriers with three different x compositions. Therefore, the barrier profile is in the form of a staircase-like barrier. The main difference between the two structures is the doping profile and the doping concentration of the QWs. PR spectra were taken at room temperature using a He-Ne laser as a modulation source and a broadband tungsten halogen lamp as a probe light. The PR spectra were analyzed using Aspnes' third derivative functional form

    Optical properties of GaBiAs single quantum well structures grown by MBE

    No full text
    In this study, molecular beam epitaxial-grown GaAs/GaBiAs single quantum well systems with two different Bi contents were investigated. Spectral dependence of room temperature photomodulated reflectance (PR) and photoluminescence (PL) measurements in the temperature range of 35-300 K were employed. PR spectra indicate that increasing Bi concentration promotes a tendency to approach quantized higher energy levels in the heavy and light holes' bands due to the different effects of compressive strain, which depends on Bi concentrations. In addition, a defect level is identified at 0.71 eV at room temperature PR spectra and is attributed to a As-Ga antisite defect in GaAs barrier layers caused by the low temperature growth process. From the analysis of the temperature dependence of emission energy and amplitude in the PL spectra, localized states are determined in the range of 8 to 45 meV and attributed to the different bonding configuration of Bi clusters. Low temperature PL results imply that Bi cluster states tend to move into the valance band when Bi content increases from 2.4 to 7.0% in the GaBiAs system

    Influence of nitrogen on hole effective mass and hole mobility in p-type modulation doped GaInNAs/GaAs quantum well structures

    No full text
    Nitrogen dependence of hole effective mass and hole mobility in p-type modulation doped Ga0.68In0.32NyAs1-y/GaAs quantum well structures with y = 0, 0.009, 0.012, 0.017 are investigated using magnetotransport and Hall effect measurements. Observed N-dependent reduction of the hole effective mass is explained by stronger confinement of holes. Hole effective mass is also found to have hole density dependence due to the strain-induced valance band non-parabolicity. A tendency to decrease in hole effective mass upon annealing can be attributed to the reduction of well width and/or decrease in hole density. A significant improvement in low temperature hole mobility is observed after annealing. (C) 2013 AIP Publishing LLC

    An analysis of Hall mobility in as-grown and annealed n- and p-type modulation-doped GaInNAs/GaAs quantum wells

    No full text
    In this study, we investigate the effect of annealing and nitrogen amount on electronic transport properties in n- and p-type-doped Ga0.68In0.32N (y) As1-y /GaAs quantum well (QW) structures with y = 0%, 0.9%, 1.2%, 1.7%. The samples are thermal annealed at 700A degrees C for 60 and 600 s, and Hall effect measurements have been performed between 10 and 300 K. Drastic decrease is observed in the electron mobility of n-type N-containing samples due to the possible N-induced scattering mechanisms and increasing effect mass of the alloy. The temperature dependence of electron mobility has an almost temperature insensitive characteristic, whereas for p-type samples hole mobility is decreased drastically at T > 120 K. As N concentration is increased, the hole mobility also increased as a reason of decreasing lattice mismatch. Screening effect of N-related alloy scattering over phonon scattering in n-type samples may be the reason of the temperature-insensitive electron mobility. At low temperature regime, hole mobility is higher than electron mobility by a factor of 3 to 4. However, at high temperatures (T > 120 K), the mobility of p-type samples is restricted by the scattering of the optical phonons. Because the valance band discontinuity is smaller compared to the conduction band, thermionic transport of holes from QW to the barrier material, GaAs, also contributes to the mobility at high temperatures that results in a decrease in mobility. The hole mobility results of as-grown samples do not show a systematic behavior, while annealed samples do, depending on N concentration. Thermal annealing does not show a significant improvement of electron mobility

    Negative and positive magnetoresistance in GaInNAs/GaAs modulation-doped quantum well structures

    No full text
    In this work, magnetoresistance of as-grown and annealed n- and p-type modulation-doped Ga0.68In0.32NyAs1-y/GaAs single quantum well structures with various nitrogen concentrations has been studied. At low temperatures and low magnetic fields, in n-type samples negative and in p-type samples positive, magnetoresistance has been observed. The observed negative magnetoresistance in n-type samples is an indication of enhanced backscattering of electrons due to the weak localization of the electrons as an effect of the N-induced defects. Nitrogen concentration and thermal annealing dependence of the magnetoresistance have been studied for both n- and p-type samples. The observed decrease in the negative magnetoresistance in n-type and enhanced positive magnetoresistance in p-type samples following thermal annealing have been explained by considering thermal annealing-induced improvement of mobility and the crystal quality in N-containing samples. After thermal annealing, the magnitude of negative magnetoresistance decreases and the breaking of the weak localization is achieved at lower magnetic fields in n-type samples. It is observed that as the mobility of the sample increases, critical magnetic field of negative to positive magnetoresistance transition becomes lower

    Quantum oscillations and interference effects in strained n- and p-type modulation doped GaInNAs/GaAs quantum wells

    No full text
    We have performed magnetoresistance measurements on n- and p-type modulation doped GaInNAs/GaAs quantum well (QW) structures in both the weak (B < 0.08 T) and the high magnetic field (up to 18 T) at 75 mK and 6 K. We observe that the quantum oscillations in rho(xx) and quantum Hall effect (QHE) plateaus in rho(xy) are affected from the presence of the nitrogen in the III-V lattice. The enhancement of n- related scatterings and electron effective mass with increasing nitrogen causes lower electron mobility and higher two-dimensional (2D) electron density, leading to suppressed QHE plateaus in rho(xy) up to 7 T at 6 K. The Shubnikov de Haas (SdH) oscillations develop at lower magnetic fields for higher mobility samples at 6 K and the amplitude of SdH oscillations decreases with increasing nitrogen composition. The well-pronounced QHE plateaus are observed at 75 mK and at higher magnetic fields up to 18 T, for the p-type sample. For n- type samples, the observed anomalies in the characteristic of QHE is attributed the nitrogen-related disorders and overlapping of fluctuating Landau levels. The low magnetic field measurements at 75 mK reveal that the n-type samples exhibit weak antilocalization, whereas weak localization is observed for the p-type sample. The observation of weak antilocalization is an indication of strong electron spin-orbit interactions. The low field magnetoresistance traces are used to extract the spin coherence, phase coherence and elastic scattering times as well Rashba parameters and spin-splitting energy. The calculated Rashba parameters for nitrogen containing samples reveal that the nitrogen composition is a significant parameter to determine the degree of the spin-orbit interactions. Consequently, GaInNAs-based QW structures with various nitrogen compositions can be beneficial to adjust the spin-orbit coupling strength and may be used as a candidate for spintronics applications

    Excitation energy-dependent nature of Raman scattering spectrum in GaInNAs/GaAs quantum well structures

    No full text
    The excitation energy-dependent nature of Raman scattering spectrum, vibration, electronic or both, has been studied using different excitation sources on as-grown and annealed n- and p-type modulation-doped Ga1 -aEuro parts per thousand x In (x) N (y) As1 -aEuro parts per thousand y /GaAs quantum well structures. The samples were grown by molecular beam technique with different N concentrations (y = 0%, 0.9%, 1.2%, 1.7%) at the same In concentration of 32%. Micro-Raman measurements have been carried out using 532 and 758 nm lines of diode lasers, and the 1064 nm line of the Nd-YAG laser has been used for Fourier transform-Raman scattering measurements. Raman scattering measurements with different excitation sources have revealed that the excitation energy is the decisive mechanism on the nature of the Raman scattering spectrum. When the excitation energy is close to the electronic band gap energy of any constituent semiconductor materials in the sample, electronic transition dominates the spectrum, leading to a very broad peak. In the condition that the excitation energy is much higher than the band gap energy, only vibrational modes contribute to the Raman scattering spectrum of the samples. Line shapes of the Raman scattering spectrum with the 785 and 1064 nm lines of lasers have been observed to be very broad peaks, whose absolute peak energy values are in good agreement with the ones obtained from photoluminescence measurements. On the other hand, Raman scattering spectrum with the 532 nm line has exhibited only vibrational modes. As a complementary tool of Raman scattering measurements with the excitation source of 532 nm, which shows weak vibrational transitions, attenuated total reflectance infrared spectroscopy has been also carried out. The results exhibited that the nature of the Raman scattering spectrum is strongly excitation energy-dependent, and with suitable excitation energy, electronic and/or vibrational transitions can be investigated

    Bismuth-induced effects on optical, lattice vibrational, and structural properties of bulk GaAsBi alloys

    No full text
    Bulk GaAs1 (-) Bi-x(x)/GaAs alloys with various bismuth compositions are studied using power- and temperature-dependent photoluminescence (PL), Raman scattering, and atomic force microscopy (AFM). PL measurements exhibit that the bandgap of the alloy decreases with increasing bismuth composition. Moreover, PL peak energy and PL characteristic are found to be excitation intensity dependent. The PL signal is detectable below 150 K at low excitation intensities, but quenches at higher temperatures. As excitation intensity is increased, PL can be observable at room temperature and PL peak energy blueshifts. The quenching temperature of the PL signal tends to shift to higher temperatures with increasing bismuth composition, giving rise to an increase in Bi-related localization energy of disorders. The composition dependence of the PL is also found to be power dependent, changing from about 63 to 87 meV/Bi% as excitation intensity is increased. In addition, S-shaped temperature dependence at low excitation intensities is observed, a well-known signature of localized levels above valence band. Applying Varshni's law to the temperature dependence of the PL peak energy, the concentration dependence of Debye temperature (beta) and thermal expansion coefficient (alpha) are determined. AFM observations show that bismuth islands are randomly distributed on the surface and the diameter of the islands tends to increase with increasing bismuth composition. Raman scattering spectra show that incorporation of Bi into GaAs causes a new feature at around 185 cm(-1) with slightly increasing Raman intensity as the Bi concentration increases. A broad feature located between 210 and 250 cm(-1) is also observed and its intensity increases with increasing Bi content. Furthermore, the forbidden transverse optical (TO) mode becomes more pronounced for the samples with higher bismuth composition, which can be attributed to the effect of Bi-induced disorders on crystal symmetry

    Influence of high electron concentration on band gap and effective electron mass of InN

    No full text
    Effects of high electron concentration on the band gap energy of InN films having different layer thicknesses as 600 and 800 nm are investigated experimentally and theoretically. Electron concentrations of the samples are obtained through the Hall measurements accomplished between 77K and room temperature. Optical characterization of the samples is carried out using the photoluminescence (PL) measurements and the observed PL spectra are explained considering the high electron concentration related effects, i.e. Burstein-Moss shift, band renormalization and band tailing in non-parabolic k.p model. Extracted PL results indicate that the samples have approximately 0.685 eV band gap energy at 77 K. Effective mass of the carriers, which is calculated as 0.097m(0) for electron concentration of similar to 10(19) cm(-3), are also observed to be influenced by the high carrier concentration. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei
    corecore