21 research outputs found

    Development and Validation of an OMERACT MRI Whole-Body Score for Inflammation in Peripheral Joints and Entheses in Inflammatory Arthritis (MRI-WIPE)

    Get PDF
    Objective: To develop a whole-body MRI-scoring system for peripheral arthritis and enthesitis. Methods: After consensus on definitions/locations of MRI pathologies, four multi-reader exercises were performed. Eighty-three joints were scored 0-3 separately for synovitis and osteitis, thirty-three entheses 0-3 separately for soft tissue inflammation and osteitis. Results: In the last exercise, reliability was moderate-good for musculoskeletal radiologists and rheumatologists with previously demonstrated good scoring proficiency. Median pairwise single-measure/average-measure ICCs were 0.67/0.80 for status scores and 0.69/0.82 for change scores; kappas ranged 0.35-0.77. Conclusion: WBMRI scoring of peripheral arthritis and enthesitis is reliable which encourages further testing and refinement in clinical trials

    Long Term Metabolic Syndrome Induced by a High Fat High Fructose Diet Leads to Minimal Renal Injury in C57BL/6 Mice

    Get PDF
    Metabolic syndrome can induce chronic kidney disease in humans. Genetically engineered mice on a C57BL/6 background are highly used for mechanistic studies. Although it has been shown that metabolic syndrome induces cardiovascular lesions in C57BL/6 mice, in depth renal phenotyping has never been performed. Therefore in this study we characterized renal function and injury in C57BL/6 mice with long-term metabolic syndrome induced by a high fat and fructose diet (HFFD). C57BL/6 mice received an 8 months HFFD diet enriched with fat (45% energy from fat) and drinking water enriched with fructose (30%). Body weight, food/water consumption, energy intake, fat/lean mass ratio, plasma glucose, HDL, LDL, triglycerides and cholesterol levels were monitored. At 3, 6 and 8 months, renal function was determined by inulin clearance and measure of albuminuria. At sacrifice, kidneys and liver were collected. Metabolic syndrome in C57BL/6 mice fed a HFFD was observed as early 4 weeks with development of type 2 diabetes at 8 weeks after initiation of diet. However, detailed analysis of kidney structure and function showed only minimal renal injury after 8 months of HFFD. HFFD induced moderate glomerular hyperfiltration (436,4 µL/min vs 289,8 µL/min; p-value=0.0418) together with a 2-fold increase in albuminuria only after 8 months of HFFD. This was accompanied by a 2-fold increase in renal inflammation (p-value=0.0217) but without renal fibrosis or mesangial matrix expansion. In addition, electron microscopy did not show alterations in glomeruli such as basal membrane thickening and foot process effacement. Finally, comparison of the urinary peptidome of these mice with the urinary peptidome from humans with diabetic nephropathy also suggested absence of diabetic nephropathy in this model. This study provides evidence that the HFFD C57BL/6 model is not the optimal model to study the effects of metabolic syndrome on the development of diabetic kidney disease
    corecore