439 research outputs found

    Identifiability for Blind Source Separation of Multiple Finite Alphabet Linear Mixtures

    Full text link
    We give under weak assumptions a complete combinatorial characterization of identifiability for linear mixtures of finite alphabet sources, with unknown mixing weights and unknown source signals, but known alphabet. This is based on a detailed treatment of the case of a single linear mixture. Notably, our identifiability analysis applies also to the case of unknown number of sources. We provide sufficient and necessary conditions for identifiability and give a simple sufficient criterion together with an explicit construction to determine the weights and the source signals for deterministic data by taking advantage of the hierarchical structure within the possible mixture values. We show that the probability of identifiability is related to the distribution of a hitting time and converges exponentially fast to one when the underlying sources come from a discrete Markov process. Finally, we explore our theoretical results in a simulation study. Our work extends and clarifies the scope of scenarios for which blind source separation becomes meaningful

    Autocovariance estimation in regression with a discontinuous signal and mm-dependent errors: A difference-based approach

    Full text link
    We discuss a class of difference-based estimators for the autocovariance in nonparametric regression when the signal is discontinuous (change-point regression), possibly highly fluctuating, and the errors form a stationary mm-dependent process. These estimators circumvent the explicit pre-estimation of the unknown regression function, a task which is particularly challenging for such signals. We provide explicit expressions for their mean squared errors when the signal function is piecewise constant (segment regression) and the errors are Gaussian. Based on this we derive biased-optimized estimates which do not depend on the particular (unknown) autocovariance structure. Notably, for positively correlated errors, that part of the variance of our estimators which depends on the signal is minimal as well. Further, we provide sufficient conditions for n\sqrt{n}-consistency; this result is extended to piecewise Holder regression with non-Gaussian errors. We combine our biased-optimized autocovariance estimates with a projection-based approach and derive covariance matrix estimates, a method which is of independent interest. Several simulation studies as well as an application to biophysical measurements complement this paper.Comment: 41 pages, 3 figures, 3 table

    Multiscale Change-Point Inference

    Full text link
    We introduce a new estimator SMUCE (simultaneous multiscale change-point estimator) for the change-point problem in exponential family regression. An unknown step function is estimated by minimizing the number of change-points over the acceptance region of a multiscale test at a level \alpha. The probability of overestimating the true number of change-points K is controlled by the asymptotic null distribution of the multiscale test statistic. Further, we derive exponential bounds for the probability of underestimating K. By balancing these quantities, \alpha will be chosen such that the probability of correctly estimating K is maximized. All results are even non-asymptotic for the normal case. Based on the aforementioned bounds, we construct asymptotically honest confidence sets for the unknown step function and its change-points. At the same time, we obtain exponential bounds for estimating the change-point locations which for example yield the minimax rate O(1/n) up to a log term. Finally, SMUCE asymptotically achieves the optimal detection rate of vanishing signals. We illustrate how dynamic programming techniques can be employed for efficient computation of estimators and confidence regions. The performance of the proposed multiscale approach is illustrated by simulations and in two cutting-edge applications from genetic engineering and photoemission spectroscopy

    Heterogeneous Change Point Inference

    Full text link
    We propose HSMUCE (heterogeneous simultaneous multiscale change-point estimator) for the detection of multiple change-points of the signal in a heterogeneous gaussian regression model. A piecewise constant function is estimated by minimizing the number of change-points over the acceptance region of a multiscale test which locally adapts to changes in the variance. The multiscale test is a combination of local likelihood ratio tests which are properly calibrated by scale dependent critical values in order to keep a global nominal level alpha, even for finite samples. We show that HSMUCE controls the error of over- and underestimation of the number of change-points. To this end, new deviation bounds for F-type statistics are derived. Moreover, we obtain confidence sets for the whole signal. All results are non-asymptotic and uniform over a large class of heterogeneous change-point models. HSMUCE is fast to compute, achieves the optimal detection rate and estimates the number of change-points at almost optimal accuracy for vanishing signals, while still being robust. We compare HSMUCE with several state of the art methods in simulations and analyse current recordings of a transmembrane protein in the bacterial outer membrane with pronounced heterogeneity for its states. An R-package is available online
    corecore