8 research outputs found

    The ClinGen Epilepsy Gene Curation Expert Panel—Bridging the divide between clinical domain knowledge and formal gene curation criteria

    Get PDF
    The field of epilepsy genetics is advancing rapidly and epilepsy is emerging as a frequent indication for diagnostic genetic testing. Within the larger ClinGen framework, the ClinGen Epilepsy Gene Curation Expert Panel is tasked with connecting two increasingly separate fields: the domain of traditional clinical epileptology, with its own established language and classification criteria, and the rapidly evolving area of diagnostic genetic testing that adheres to formal criteria for gene and variant curation. We identify critical components unique to the epilepsy gene curation effort, including: (a) precise phenotype definitions within existing disease and phenotype ontologies; (b) consideration of when epilepsy should be curated as a distinct disease entity; (c) strategies for gene selection; and (d) emerging rules for evaluating functional models for seizure disorders. Given that de novo variants play a prominent role in many of the epilepsies, sufficient genetic evidence is often awarded early in the curation process. Therefore, the emphasis of gene curation is frequently shifted toward an iterative precuration process to better capture phenotypic associations. We demonstrate that within the spectrum of neurodevelopmental disorders, gene curation for epilepsy-associated genes is feasible and suggest epilepsy-specific conventions, laying the groundwork for a curation process of all major epilepsy-associated genes

    Design and implementation of electronic health record common data elements for pediatric epilepsy: Foundations for a learning health care system

    No full text
    Objective: Common data elements (CDEs) are standardized questions and answer choices that allow aggregation, analysis, and comparison of observations from multiple sources. Clinical CDEs are foundational for learning health care systems, a data-driven approach to health care focused on continuous improvement of outcomes. We aimed to create clinical CDEs for pediatric epilepsy. Methods: A multiple stakeholder group (clinicians, researchers, parents, caregivers, advocates, and electronic health record [EHR] vendors) developed clinical CDEs for routine care of children with epilepsy. Initial drafts drew from clinical epilepsy note templates, CDEs created for clinical research, items in existing registries, consensus documents and guidelines, quality metrics, and outcomes needed for demonstration projects. The CDEs were refined through discussion and field testing. We describe the development process, rationale for CDE selection, findings from piloting, and the CDEs themselves. We also describe early implementation, including experience with EHR systems and compatibility with the International League Against Epilepsy classification of seizure types. Results: Common data elements were drafted in August 2017 and finalized in January 2020. Prioritized outcomes included seizure control, seizure freedom, American Academy of Neurology quality measures, presence of common comorbidities, and quality of life. The CDEs were piloted at 224 visits at 10 centers. The final CDEs included 36 questions in nine sections (number of questions): diagnosis (1), seizure frequency (9), quality of life (2), epilepsy history (6), etiology (8), comorbidities (2), treatment (2), process measures (5), and longitudinal history notes (1). Seizures are categorized as generalized tonic-clonic (regardless of onset), motor, nonmotor, and epileptic spasms. Focality is collected as epilepsy type rather than seizure type. Seizure frequency is measured in nine levels (all used during piloting). The CDEs were implemented in three vendor systems. Early clinical adoption included 1294 encounters at one center. Significance: We created, piloted, refined, finalized, and implemented a novel set of clinical CDEs for pediatric epilepsy

    The ClinGen Epilepsy Gene Curation Expert Panel-Bridging the divide between clinical domain knowledge and formal gene curation criteria.

    Get PDF
    The field of epilepsy genetics is advancing rapidly and epilepsy is emerging as a frequent indication for diagnostic genetic testing. Within the larger ClinGen framework, the ClinGen Epilepsy Gene Curation Expert Panel is tasked with connecting two increasingly separate fields: the domain of traditional clinical epileptology, with its own established language and classification criteria, and the rapidly evolving area of diagnostic genetic testing that adheres to formal criteria for gene and variant curation. We identify critical components unique to the epilepsy gene curation effort, including: (a) precise phenotype definitions within existing disease and phenotype ontologies; (b) consideration of when epilepsy should be curated as a distinct disease entity; (c) strategies for gene selection; and (d) emerging rules for evaluating functional models for seizure disorders. Given that de novo variants play a prominent role in many of the epilepsies, sufficient genetic evidence is often awarded early in the curation process. Therefore, the emphasis of gene curation is frequently shifted toward an iterative precuration process to better capture phenotypic associations. We demonstrate that within the spectrum of neurodevelopmental disorders, gene curation for epilepsy-associated genes is feasible and suggest epilepsy-specific conventions, laying the groundwork for a curation process of all major epilepsy-associated genes

    Spectrum of neurodevelopmental disease associated with the GNAO1 guanosine triphosphate-binding region

    No full text
    Objective:To characterize the phenotypic spectrum associated withGNAO1vari-ants and establish genotype‐protein structure‐phenotype relationships. Methods:We evaluated the phenotypes of 14 patients withGNAO1variants, ana-lyzed their variants for potential pathogenici ty, and mapped them, along withthose in the literature, on a three‐dimensional structural protein model.Results:The 14 patients in our cohort, including one sibling pair, had 13 distinct,heterozygousGNAO1variants classified as pathogenic or likely pathogenic. Weattributed the same variant in two siblings to parental mosaicism. Patients initiallypresented with seizures beginning in the first 3 months of life (8/14), developmen-tal delay (4/14), hypotonia (1/14), or movement disorder (1/14). All patients hadhypotonia and developmental delay ranging from mild to severe. Nine had epi-lepsy, and nine had movement disorders, including dystonia, ataxia, chorea, anddyskinesia. The 13GNAO1variants in our patients are predicted to result inamino acid substitutions or deletions in the GNAO1 guanosine triphosphate(GTP)‐binding region, analogous to those in previous publications. Patients withvariants affecting amino acids 207‐221 had only movement disorder andhypotonia. Patients with variants affecting the C‐terminal region had the mildestphenotypes.Significance:GNAO1encephalopathy most frequently presents with seizuresbeginning in the first 3 months of life. Concurrent movement disorders are also aprominent feature in the spectrum ofGNAO1encephalopathy. All variantsaffected the GTP‐binding domain of GNAO1, highlighting the importance of thisregion for G‐protein signaling and neurodevelopment

    Design and implementation of electronic health record common data elements for pediatric epilepsy: Foundations for a learning health care system.

    No full text
    ObjectiveCommon data elements (CDEs) are standardized questions and answer choices that allow aggregation, analysis, and comparison of observations from multiple sources. Clinical CDEs are foundational for learning health care systems, a data‐driven approach to health care focused on continuous improvement of outcomes. We aimed to create clinical CDEs for pediatric epilepsy.MethodsA multiple stakeholder group (clinicians, researchers, parents, caregivers, advocates, and electronic health record [EHR] vendors) developed clinical CDEs for routine care of children with epilepsy. Initial drafts drew from clinical epilepsy note templates, CDEs created for clinical research, items in existing registries, consensus documents and guidelines, quality metrics, and outcomes needed for demonstration projects. The CDEs were refined through discussion and field testing. We describe the development process, rationale for CDE selection, findings from piloting, and the CDEs themselves. We also describe early implementation, including experience with EHR systems and compatibility with the International League Against Epilepsy classification of seizure types.ResultsCommon data elements were drafted in August 2017 and finalized in January 2020. Prioritized outcomes included seizure control, seizure freedom, American Academy of Neurology quality measures, presence of common comorbidities, and quality of life. The CDEs were piloted at 224 visits at 10 centers. The final CDEs included 36 questions in nine sections (number of questions): diagnosis (1), seizure frequency (9), quality of life (2), epilepsy history (6), etiology (8), comorbidities (2), treatment (2), process measures (5), and longitudinal history notes (1). Seizures are categorized as generalized tonic‐clonic (regardless of onset), motor, nonmotor, and epileptic spasms. Focality is collected as epilepsy type rather than seizure type. Seizure frequency is measured in nine levels (all used during piloting). The CDEs were implemented in three vendor systems. Early clinical adoption included 1294 encounters at one center.SignificanceWe created, piloted, refined, finalized, and implemented a novel set of clinical CDEs for pediatric epilepsy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/166156/1/epi16733.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/166156/2/epi16733_am.pd

    Spectrum of neurodevelopmental disease associated with the GNAO1 guanosine triphosphate-binding region

    No full text
    OBJECTIVE: To characterize the phenotypic spectrum associated with GNAO1 variants and establish genotype-protein structure-phenotype relationships. METHODS: We evaluated the phenotypes of 14 patients with GNAO1 variants, analyzed their variants for potential pathogenicity, and mapped them, along with those in the literature, on a three-dimensional structural protein model. RESULTS: The 14 patients in our cohort, including one sibling pair, had 13 distinct, heterozygous GNAO1 variants classified as pathogenic or likely pathogenic. We attributed the same variant in two siblings to parental mosaicism. Patients initially presented with seizures beginning in the first 3 months of life (8/14), developmental delay (4/14), hypotonia (1/14), or movement disorder (1/14). All patients had hypotonia and developmental delay ranging from mild to severe. Nine had epilepsy, and nine had movement disorders, including dystonia, ataxia, chorea, and dyskinesia. The 13 GNAO1 variants in our patients are predicted to result in amino acid substitutions or deletions in the GNAO1 guanosine triphosphate (GTP)-binding region, analogous to those in previous publications. Patients with variants affecting amino acids 207-221 had only movement disorder and hypotonia. Patients with variants affecting the C-terminal region had the mildest phenotypes. SIGNIFICANCE: GNAO1 encephalopathy most frequently presents with seizures beginning in the first 3 months of life. Concurrent movement disorders are also a prominent feature in the spectrum of GNAO1 encephalopathy. All variants affected the GTP-binding domain of GNAO1, highlighting the importance of this region for G-protein signaling and neurodevelopment.status: publishe

    Spectrum of neurodevelopmental disease associated with the GNAO1 guanosine triphosphate-binding region

    No full text
    Objective To characterize the phenotypic spectrum associated with GNAO1 variants and establish genotype-protein structure-phenotype relationships. Methods We evaluated the phenotypes of 14 patients with GNAO1 variants, analyzed their variants for potential pathogenicity, and mapped them, along with those in the literature, on a three-dimensional structural protein model. Results The 14 patients in our cohort, including one sibling pair, had 13 distinct, heterozygous GNAO1 variants classified as pathogenic or likely pathogenic. We attributed the same variant in two siblings to parental mosaicism. Patients initially presented with seizures beginning in the first 3 months of life (8/14), developmental delay (4/14), hypotonia (1/14), or movement disorder (1/14). All patients had hypotonia and developmental delay ranging from mild to severe. Nine had epilepsy, and nine had movement disorders, including dystonia, ataxia, chorea, and dyskinesia. The 13 GNAO1 variants in our patients are predicted to result in amino acid substitutions or deletions in the GNAO1 guanosine triphosphate (GTP)-binding region, analogous to those in previous publications. Patients with variants affecting amino acids 207-221 had only movement disorder and hypotonia. Patients with variants affecting the C-terminal region had the mildest phenotypes.
    corecore