21 research outputs found

    Thermal conductivity, microstructure and hardened characteristics of foamed concrete composite reinforced with raffia fiber

    Get PDF
    Researchers have become enthralled with using natural fiber, which is a waste product from industrial processes, as an additive in cement-based materials. This is due to the fact that natural fiber is inexpensive, has principal carbon neutrality, and is obtainable in large quantities. Additionally, this fiber is made from a renewable resource. Hence it has a low density and is amenable to undergoing chemical alteration. The idea of this investigation is to discover the reactivity of raffia (raphia vinifera) fiber (RF) in low-density foamed concrete (FC). FC density of 950 kg/m3 was utilized. Workability, density, thermal conductivity, SEM analysis, compressive, bending, and tensile strengths were the parameters that were quantified and assessed. Based on the outcomes, it has been determined that the mechanical properties and thermal conductivity of FC-RF composites may be enhanced by using RF with an ideal reinforcing fraction content of 6%. Slump flow gradually decreased from 2% to 8% RF fraction content. The lowest slump flow was achieved by adding RF to the FC mixture at a fraction content of 8%. The density of FC-RF composites shows a developing tendency, likely because of the RF's comparatively high specific gravity and increasing fraction content. The addition of RF to FC considerably enhances the material's compressive, bending, and tensile strength. The optimal strength characteristics emerged when 6% RF was added to FC. Besides, the FC thermal conductivity improves as the weight percent of RF increases because the porous structure of FC with RF allows it to absorb heat

    Study on freshness, morphology, strength, and durability properties of foamed concrete reinforced with agave fiber

    Get PDF
    Currently, foamed concrete (FC) is widely employed in building construction and civil engineering works, and by using abundant natural fibers in FC, significant environmental benefits can be obtained. The durability properties of the essential materials acting independently could well be enhanced if the appropriate proportion of natural fiber-strengthened FC were used in the correct volume. This study aimed to develop new composite materials composed of FC and agave fiber (AF). The objective was to ascertain the optimal proportion of AF to be added to FC to increase its durability performance. A low-density FC of 950 kg/m3 was fabricated utilizing varying percentages of AF, namely 0% (control), 1.5%, 3.0%, 4.5%, 6.0%, and 7.5%. The evaluated properties were the shrinkage, workability, density, water absorption, ultrasonic pulse velocity, porosity, compressive strength, and elastic modulus. Using AFs in FC, the optimal shrinkage and ultrasonic pulse velocity were observed. When the weight fractions of AF were increased from 1% to 4.5% in the mixtures, the porosity, workability, and water absorption of FC were significantly reduced. In addition, FC showed a slight increase in the dry density with the rise in the AF’s weight fraction and the increase in the curing age from day-7 to day-56. This research delivers noteworthy data on the durability properties of FC-AF composites, allowing future researchers to study other properties like the structural performance, strength properties, and thermal conductivity of FC-AF composites

    Evaluation of Sustainable Concrete Production and Construction Cost Implication in Nigeria

    Get PDF
    Sustainable concrete provides a considerable solution to the increasing cost of conventional concrete production in the world. Though, it is generally described as cheap, however it’s design and cost implications for low income communities needs to be evaluated. Hence, this paper evaluates the production of sustainable concrete and its cost implication in Nigeria. Experimental design of high strength concrete made with steel fibre and bamboo fibre as reinforcement having a targeted compressive strength of 50 Mpa was considered. The steel and bamboo fibres were proportioned at 1 % each. From the experimental mix design and cost analysis conducted, it was realized that steel fibre reinforced concrete are most expensive per cubic metre, costing about seven times as much as plain concrete of the same volume, but bamboo is a low cost alternative to steel as a reinforcing material.Key words: affordable housing, bamboo fibre, concrete, steel fibre, sustainabilit
    corecore