12 research outputs found

    Variation analysis and gene annotation of eight MHC haplotypes: The MHC Haplotype Project

    Get PDF
    The human major histocompatibility complex (MHC) is contained within about 4 Mb on the short arm of chromosome 6 and is recognised as the most variable region in the human genome. The primary aim of the MHC Haplotype Project was to provide a comprehensively annotated reference sequence of a single, human leukocyte antigen-homozygous MHC haplotype and to use it as a basis against which variations could be assessed from seven other similarly homozygous cell lines, representative of the most common MHC haplotypes in the European population. Comparison of the haplotype sequences, including four haplotypes not previously analysed, resulted in the identification of >44,000 variations, both substitutions and indels (insertions and deletions), which have been submitted to the dbSNP database. The gene annotation uncovered haplotype-specific differences and confirmed the presence of more than 300 loci, including over 160 protein-coding genes. Combined analysis of the variation and annotation datasets revealed 122 gene loci with coding substitutions of which 97 were non-synonymous. The haplotype (A3-B7-DR15; PGF cell line) designated as the new MHC reference sequence, has been incorporated into the human genome assembly (NCBI35 and subsequent builds), and constitutes the largest single-haplotype sequence of the human genome to date. The extensive variation and annotation data derived from the analysis of seven further haplotypes have been made publicly available and provide a framework and resource for future association studies of all MHC-associated diseases and transplant medicine

    Molecular Histopathology Using Gold Nanorods and Optical Coherence Tomography

    No full text
    PURPOSE. To examine the novel application of a commercially available optical coherence tomography (OCT) system toward molecular histopathology using gold nanorod (GNR) linked antibodies as a functionalized contrast agent to evaluate ocular surface squamous neoplasia (OSSN). METHODS. GNRs were synthesized and covalently attached to anti–glucose transporter-1 (GLUT-1) antibodies via carbodiimide chemistry. Three specimens from each of three distinct categories of human conjunctival tissue were selected for analysis, including conjunctiva without epithelial atypia (controls); conjunctival intraepithelial neoplasia, carcinoma in situ (CIS); and conjunctival squamous cell carcinoma (SCC). Tissue sections were incubated initially with GNR tagged anti–GLUT-1 antibodies and then with a fluorescent-tagged secondary antibody. Immunofluorescence and OCT imaging of the tissue was performed and the results were correlated to the light microscopic findings on traditional hemotoxyin and eosin stained sections. RESULTS. No binding of the functionalized GNRs was observed within the epithelium of three normal conjunctiva controls. While immunofluorescence disclosed variable binding of the functionalized GNRs to atypical epithelial cells in all six cases of OSSN, the enhancement of the OCT signal in three cases of CIS was insufficient to distinguish these specimens from normal controls. In two of three cases of SCC, binding of functionalized GNRs was sufficient to produce an increased scattering effect on OCT in areas correlating to atypical epithelial cells which stained intensely on immunofluorescence imaging. Binding of functionalized GNRs was sufficient to produce an increased scattering effect on OCT in areas correlating to regions of erythrocytes and hemorrhage which stained intensely on immunofluorescence imaging within all nine tested samples. CONCLUSIONS. We have demonstrated the use of OCT for molecular histopathology using functionalized gold nanorods in the setting of OSSN. Our results suggest a threshold concentration of functionalized GNRs within tissue is required to achieve a detectable enhancement in scattering of the OCT signal

    Single Step Nanoplasmonic Immunoassay for the Measurement of Protein Biomarkers

    No full text
    A nanoplasmonic biosensor for highly-sensitive, single-step detection of protein biomarkers is presented. The principle is based on the utilization of the optical scattering properties of gold nanorods (GNRs) conjugated to bio-recognition molecules. The nanoplasmonic properties of the GNRs were utilized to detect proteins using near-infrared light interferometry. We show that the antibody-conjugated GNRs can specifically bind to our model analyte, Glucose Transporter-1 (Glut-1). The signal intensity of back-scattered light from the GNRs bound after incubation, correlated well to the Glut-1 concentration as per the calibration curve. The detection range using this nanoplasmonic immunoassay ranges from 10 ng/mL to 1 ug/mL for Glut-1. The minimal detectable concentration based on the lowest discernable concentration from zero is 10 ng/mL. This nanoplasmonic immunoassay can act as a simple, selective, sensitive strategy for effective disease diagnosis. It offers advantages such as wide detection range, increased speed of analysis (due to fewer incubation/washing steps), and no label development as compared to traditional immunoassay techniques. Our future goal is to incorporate this detection strategy onto a microfluidic platform to be used as a point-of-care diagnostic tool

    Visual Outcomes in Pediatric Optic Pathway Glioma After Conformal Radiation Therapy

    No full text
    To assess visual outcome prospectively after conformal radiation therapy (CRT) in children with optic pathway glioma. We used CRT to treat optic pathway glioma in 20 children (median age 9.3 years) between July 1997 and January 2002. We assessed changes in visual acuity using the logarithm of the minimal angle of resolution after CRT (54 Gy) with a median follow-up of 24 months. We included in the study children who underwent chemotherapy (8 patients) or resection (9 patients) before CRT. Surgery played a major role in determining baseline (pre-CRT) visual acuity (better eye: P=.0431; worse eye: P=.0032). The visual acuity in the worse eye was diminished at baseline (borderline significant) with administration of chemotherapy before CRT (P=.0726) and progression of disease prior to receiving CRT (P=.0220). In the worse eye, improvement in visual acuity was observed in patients who did not receive chemotherapy before CRT (P=.0289). Children with optic pathway glioma initially treated with chemotherapy prior to receiving radiation therapy have decreased visual acuity compared with those who receive primary radiation therapy. Limited surgery before radiation therapy may have a role in preserving visual acuity
    corecore