84 research outputs found

    Understanding Healthcare Students’ Experiences of Racial Bias: A Narrative Review of the Role of Implicit Bias and Potential Interventions in Educational Settings

    Get PDF
    Implicit racial bias is a persistent and pervasive challenge within healthcare education and training settings. A recent systematic review reported that 84% of included studies (31 out of 37) showed evidence of slight to strong pro-white or light skin tone bias amongst healthcare students and professionals. However, there remains a need to improve understanding about its impact on healthcare students and how they can be better supported. This narrative review provides an overview of current evidence regarding the role of implicit racial bias within healthcare education, considering trends, factors that contribute to bias, and possible interventions. Current evidence suggests that biases held by students remain consistent and may increase during healthcare education. Sources that contribute to the formation and maintenance of implicit racial bias include peers, educators, the curriculum, and placements within healthcare settings. Experiences of implicit racial bias can lead to psychosomatic symptoms, high attrition rates, and reduced diversity within the healthcare workforce. Interventions to address implicit racial bias include an organizational commitment to reducing bias in hiring, retention, and promotion processes, and by addressing misrepresentation of race in the curriculum. We conclude that future research should identify, discuss, and critically reflect on how implicit racial biases are enacted and sustained through the hidden curriculum and can have detrimental consequences for racial and ethnic minority healthcare students

    The Pharmacokinetics and Interactions of Ivermectin in Humans—A Mini-review

    Get PDF
    Ivermectin is an antiparasitic drug with a broad spectrum of activity, high efficacy as well as a wide margin of safety. Since 1987, this compound has a widespread use in veterinary medicine and it use has been extended in humans. Here we present a brief review of the information availabile regarding the pharmacokinetics and interactions of ivermectin in humans. Awareness of these characteristics could improve the clinical efficacy of Ivermectin. All Authors declare that they do not have any Conflict of interest and that the work is original. All Authors agree that the contents of the manuscript are confidential and will not be copyrighted, submitted, or published elsewhere (including the Internet), in any language, while acceptance by the Journal is under consideration

    Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity

    Get PDF
    Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana-exposed to more than a decade of regular ivermectin treatment-have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread.Pooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR.This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT) whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic drift rather than genetic selection of SOR is the underlying driver of population differentiation, which has significant implications for the emergence and potential spread of SOR within and between these parasite populations

    Macrofilaricidal Activity after Doxycycline Only Treatment of Onchocerca volvulus in an Area of Loa loa Co-Endemicity: A Randomized Controlled Trial

    Get PDF
    The control of onchocerciasis in Africa relies on the sustained delivery of ivermectin. In certain areas, annual treatments delivered with high population coverage for at least 15–17 years can break transmission. In other endemic settings this strategy alone is thought to be insufficient to eradicate the disease. One of the major limitations occurs in areas that are co-endemic with another filarial infection caused by Loa loa, due to the risk of a rare severe adverse event associated with the rapid killing of L. loa microfilariae in heavily parasitized individuals. There are also concerns over recent evidence of reduced efficacy of ivermectin and the possible development of resistance. An alternative approach is to target the Wolbachia bacterial endosymbionts of Onchocerca volvulus with the antibiotic, doxycycline. In an area of Cameroon co-endemic for onchocerciasis and loiasis we conducted a trial comparing doxycycline with or without ivermectin treatment to ivermectin treatment alone. A six-week course of doxycycline delivers macrofilaricidal and sterilizing activities, which is not dependent upon co-administration of ivermectin. Doxycycline is well tolerated in patients co-infected with moderate intensities of L. loa microfilariae. The trial indicates that anti-wolbachial therapy is a feasible alternative to ivermectin in communities co-endemic for onchocerciasis and loiasis

    The transcriptional response of Caenorhabditis elegans to ivermectin exposure identifies novel genes involved in the response to reduced food intake

    Get PDF
    We have examined the transcriptional response of Caenorhabditis elegans following exposure to the anthelmintic drug ivermectin (IVM) using whole genome microarrays and real-time QPCR. Our original aim was to identify candidate molecules involved in IVM metabolism and/or excretion. For this reason the IVM tolerant strain, DA1316, was used to minimise transcriptomic changes related to the phenotype of drug exposure. However, unlike equivalent work with benzimidazole drugs, very few of the induced genes were members of xenobiotic metabolising enzyme families. Instead, the transcriptional response was dominated by genes associated with fat mobilization and fatty acid metabolism including catalase, esterase, and fatty acid CoA synthetase genes. This is consistent with the reduction in pharyngeal pumping, and consequential reduction in food intake, upon exposure of DA1316 worms to IVM. Genes with the highest fold change in response to IVM exposure, cyp-37B1, mtl-1 and scl-2, were comparably up-regulated in response to short–term food withdrawal (4 hr) independent of IVM exposure, and GFP reporter constructs confirm their expression in tissues associated with fat storage (intestine and hypodermis). These experiments have serendipitously identified novel genes involved in an early response of C. elegans to reduced food intake and may provide insight into similar processes in higher organisms

    Genetic polymorphisms in MDR1, CYP3A4 and CYP3A5 genes in a Ghanaian population: a plausible explanation for altered metabolism of ivermectin in humans?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ivermectin, a substrate of multidrug resistance (MDR1) gene and cytochrome P450 (CYP) 3A4, has been used successfully in the treatment of onchocerciasis in Ghana. However, there have been reports of suboptimal response in some patients after repeated treatment. Polymorphisms in host MDR1 and CYP3A genes may explain the observed suboptimal response to ivermectin. We genotyped relevant functional polymorphisms of MDR1 and CYP3A in a random sample of healthy Ghanaians and compared the data with that of ivermectin-treated patients with a view to exploring the relationship between suboptimal response to ivermectin and MDR1 and CYP3A allelic frequencies.</p> <p>Methods</p> <p>Using PCR-RFLP, relevant polymorphic alleles of MDR1 and CYP3A4 genes were analysed in 204 randomly selected individuals and in 42 ivermectin treated patients.</p> <p>Results</p> <p>We recorded significantly higher MDR1 (3435T) variant allele frequency in suboptimal responders (21%) than in patients who responded to treatment (12%) or the random population sample (11%). <it>CYP3A4*1B</it>, <it>CYP3A5*3 </it>and <it>CYP3A5*6 </it>alleles were detected at varied frequencies for the sampled Ghanaian population, responders and suboptimal responders to ivermectin. <it>CYP3A5*1/CYP3A5*1 </it>and <it>CYP3A5*1/CYP3A5*3 </it>genotypes were also found to be significantly different for responders and suboptimal responders. Haplotype (*1/*1/*3/*1) was determined to be significantly different between responders and suboptimal responders indicating a possible role of these haplotypes in treatment response with ivermectin.</p> <p>Conclusion</p> <p>A profile of pharmacogenetically relevant variants for MDR1, CYP3A4 and CYP3A5 genes has been generated for a random population of 204 Ghanaians to address the scarcity of data within indigenous African populations. In 42 patients treated with ivermectin, difference in MDR1 variant allele frequency was observed between suboptimal responders and responders.</p

    Metabolomics-Based Discovery of Diagnostic Biomarkers for Onchocerciasis

    Get PDF
    Onchocerciasis, caused by the filarial parasite Onchocerca volvulus, afflicts millions of people, causing such debilitating symptoms as blindness and acute dermatitis. There are no accurate, sensitive means of diagnosing O. volvulus infection. Clinical diagnostics are desperately needed in order to achieve the goals of controlling and eliminating onchocerciasis and neglected tropical diseases in general. In this study, a metabolomics approach is introduced for the discovery of small molecule biomarkers that can be used to diagnose O. volvulus infection. Blood samples from O. volvulus infected and uninfected individuals from different geographic regions were compared using liquid chromatography separation and mass spectrometry identification. Thousands of chromatographic mass features were statistically compared to discover 14 mass features that were significantly different between infected and uninfected individuals. Multivariate statistical analysis and machine learning algorithms demonstrated how these biomarkers could be used to differentiate between infected and uninfected individuals and indicate that the diagnostic may even be sensitive enough to assess the viability of worms. This study suggests a future potential of these biomarkers for use in a field-based onchocerciasis diagnostic and how such an approach could be expanded for the development of diagnostics for other neglected tropical diseases

    The Immunomodulatory Role of Adjuvants in Vaccines Formulated with the Recombinant Antigens Ov-103 and Ov-RAL-2 against Onchocerca volvulus in Mice.

    Get PDF
    BACKGROUND: In some regions in Africa, elimination of onchocerciasis may be possible with mass drug administration, although there is concern based on several factors that onchocerciasis cannot be eliminated solely through this approach. A vaccine against Onchocerca volvulus would provide a critical tool for the ultimate elimination of this infection. Previous studies have demonstrated that immunization of mice with Ov-103 and Ov-RAL-2, when formulated with alum, induced protective immunity. It was hypothesized that the levels of protective immunity induced with the two recombinant antigens formulated with alum would be improved by formulation with other adjuvants known to enhance different types of antigen-specific immune responses. METHODOLOGY/ PRINCIPAL FINDINGS: Immunizing mice with Ov-103 and Ov-RAL-2 in conjunction with alum, Advax 2 and MF59 induced significant levels of larval killing and host protection. The immune response was biased towards Th2 with all three of the adjuvants, with IgG1 the dominant antibody. Improved larval killing and host protection was observed in mice immunized with co-administered Ov-103 and Ov-RAL-2 in conjunction with each of the three adjuvants as compared to single immunizations. Antigen-specific antibody titers were significantly increased in mice immunized concurrently with the two antigens. Based on chemokine levels, it appears that neutrophils and eosinophils participate in the protective immune response induced by Ov-103, and macrophages and neutrophils participate in immunity induced by Ov-RAL-2. CONCLUSIONS/SIGNIFICANCE: The mechanism of protective immunity induced by Ov-103 and Ov-RAL-2, with the adjuvants alum, Advax 2 and MF59, appears to be multifactorial with roles for cytokines, chemokines, antibody and specific effector cells. The vaccines developed in this study have the potential of reducing the morbidity associated with onchocerciasis in humans

    Functional Analysis of the Cathepsin-Like Cysteine Protease Genes in Adult Brugia malayi Using RNA Interference

    Get PDF
    Filarial nematodes are an important group of human pathogens, causing lymphatic filariasis and onchocerciasis, and infecting around 150 million people throughout the tropics with more than 1.5 billion at risk of infection. Control of filariasis currently relies on mass drug administration (MDA) programs using drugs which principally target the microfilarial life-cycle stage. These control programs are facing major challenges, including the absence of a drug with macrofilaricidal or permanent sterilizing activity, and the possibility of the development of drug-resistance against the drugs available. Cysteine proteases are essential enzymes which play important roles in a wide range of cellular processes, and the cathepsin-like cysteine proteases have been identified as potential targets for drug or vaccine development in many parasites. Here we have studied the function of several of the cathepsin-like enzymes in the filarial nematode, B. malayi, and demonstrate that these cysteine proteases are involved in the development of embryos, show similar functions to their counterparts in C. elegans, and therefore, provide an important target for future drug development targeted to eliminate filariasis
    corecore