236 research outputs found

    Fluctuations, Saturation, and Diffractive Excitation in High Energy Collisions

    Full text link
    Diffractive excitation is usually described by the Good--Walker formalism for low masses, and by the triple-Regge formalism for high masses. In the Good--Walker formalism the cross section is determined by the fluctuations in the interaction. In this paper we show that by taking the fluctuations in the BFKL ladder into account, it is possible to describe both low and high mass excitation by the Good--Walker mechanism. In high energy pppp collisions the fluctuations are strongly suppressed by saturation, which implies that pomeron exchange does not factorise between DIS and pppp collisions. The Dipole Cascade Model reproduces the expected triple-Regge form for the bare pomeron, and the triple-pomeron coupling is estimated.Comment: 20 pages, 12 figure

    Estimating catch rates in real time: Development of a deep learning based Nephrops (Nephrops norvegicus) counter for demersal trawl fisheries

    Get PDF
    Demersal trawling is largely a blind process where information on catch rates and compositions is only available once the catch is taken onboard the vessel. Obtaining quantitative information on catch rates of target species while fishing can improve a fisheries economic and environmental performance as fishers would be able to use this information to make informed decisions during fishing. Despite there are real-time underwater monitoring systems developed for this purpose, the video data produced by these systems is not analyzed in near real-time. In other words, the user is expected to watch the video feed continuously to evaluate catch rates and composition. This is obviously a demanding process in which quantification of the fish counts will be of a qualitative nature. In this study, underwater footages collected using an in-trawl video recording system were processed to detect, track, and count the number of individuals of the target species, Nephrops norvegicus, entering the trawl in real-time. The detection was accomplished using a You Only Look Once v4 (YOLOv4) algorithm. Two other variants of the YOLOv4 algorithm (tiny and scaled) were included in the study to compare their effects on the accuracy of the subsequent steps and overall speed of the processing. SORT algorithm was used as the tracker and any Nephrops that cross the horizontal level at 4/5 of the frame height were counted as catch. The detection performance of the YOLOv4 model provided a mean average precision (mAP@50) value of 97.82%, which is higher than the other two variants. However, the average processing speed of the tiny model is the highest with 253.51 frames per second. A correct count rate of 80.73% was achieved by YOLOv4 when the total number of Nephrops are considered in all the test videos. In conclusion, this approach was successful in processing underwater images in real time to determine the catch rates of the target species. The approach has great potential to process multiple species simultaneously in order to provide quantitative information not only on the target species but also bycatch and unwanted species to provide a comprehensive picture of the catch composition

    From spherical compartments to polymer films: exploiting vesicle fusion to generate solid supported thin polymer membranes

    Get PDF
    Solid supported polymer membranes as scaffold for the insertion of functional biomolecules provide the basis for mimicking natural membranes. They also provide the means for unraveling biomolecule-membrane interactions and engineering platforms for biosensing. Vesicle fusion is an established procedure to obtain solid supported lipid bilayers but the more robust polymer vesicles tend to resist fusion and planar membranes rarely form. Here, we build on vesicle fusion to develop a refined and efficient way to produce solid supported membranes based on poly(dimethylsiloxane)-poly(2-methyl-2-oxazoline) (PMOXA-b-PDMS-b-PMOXA) amphiphilic triblock copolymers. We first create thiol-bearing polymer vesicles (polymersomes) and anchor them on a gold substrate. An osmotic shock then provokes polymersome rupture and drives planar film formation. Prerequisite for a uniform amphiphilic planar membrane is the proper combination of immobilized polymersomes and osmotic shock conditions. Thus, we explored the impact of the hydrophobic PDMS block length of the polymersome on the formation and the characteristics of the resulting solid supported polymer assemblies by quarz crystal microbalance with dissipation monitoring (QCM-D), atomic force microscopy (AFM) and spectroscopic ellipsometry (SE). When the PDMS block is short enough, attached polymersomes restructure in response to osmotic shock, resulting in a uniform planar membrane. Our approach to rapidly form planar polymer membranes by vesicle fusion brings many advantages to the development of synthetic planar membranes for bio-sensing and biotechnological applications

    Finite element modeling and operational modal analysis of a historical masonry mosque

    Get PDF
    Finite Element Modeling (FEM) and Operational Modal Analysis (OMA) is herein presented for the historical masonry Kütahya Kurşunlu Mosque within the framework of its seismic performance assessment. The historical structure is located in Turkey which has a high-level seismic activity. A FEM strategy was adopted to construct a numerical model of the structure considering a simplified three-dimensional geometry and a macro-modeling approach for the masonry. A representative numerical model of the existing structure was calibrated and improved according to the OMA results obtained from ambient vibration measurements, performed in-situ. The ambient vibration measurements were operated by using two triaxial accelerometers, that one of the accelerometers was regulated as a reference station whereas the other accelerometer was relocated to seven different points on the top of the walls. Identification of the experimental modal parameters was achieved by performing two different signal processing methodologies, namely the Enhanced Frequency Domain Decomposition (EFDD) and the Stochastic Subspace Identification - Unweighted Principal Components (SSI-UPC). Results obtained from both methods were compared in terms of the Modal Assurance Criterion (MAC) which considers the mode shapes derived in a specific range of frequency. The SSI-UPC method was employed in achieving the experimental modal response of the structure and the results were compared with the eigenvalue analysis results of the preliminary numerical model. A calibration process was carried out in terms of minimizing the difference between the experimental and numerical modal response by a trial and error approach and an average error of 4.9% was calculated for the modal frequencies of the first four global modes of vibration

    Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes

    Full text link
    Two-dimensional materials offer new opportunities for both fundamental science and technological applications, by exploiting the electron spin. While graphene is very promising for spin communication due to its extraordinary electron mobility, the lack of a band gap restricts its prospects for semiconducting spin devices such as spin diodes and bipolar spin transistors. The recent emergence of 2D semiconductors could help overcome this basic challenge. In this letter we report the first important step towards making 2D semiconductor spin devices. We have fabricated a spin valve based on ultra-thin (5 nm) semiconducting black phosphorus (bP), and established fundamental spin properties of this spin channel material which supports all electrical spin injection, transport, precession and detection up to room temperature (RT). Inserting a few layers of boron nitride between the ferromagnetic electrodes and bP alleviates the notorious conductivity mismatch problem and allows efficient electrical spin injection into an n-type bP. In the non-local spin valve geometry we measure Hanle spin precession and observe spin relaxation times as high as 4 ns, with spin relaxation lengths exceeding 6 um. Our experimental results are in a very good agreement with first-principles calculations and demonstrate that Elliott-Yafet spin relaxation mechanism is dominant. We also demonstrate that spin transport in ultra-thin bP depends strongly on the charge carrier concentration, and can be manipulated by the electric field effect

    How Do the Properties of Amphiphilic Polymer Membranes Influence the Functional Insertion of Peptide Pores?

    Get PDF
    Pore-forming peptides are of high biological relevance particularly as cytotoxic agents, but their properties are also applicable for the permeabilization of lipid membranes for biotechnological applications, which can then be translated to the more stable and versatile polymeric membranes. However, their interactions with synthetic membranes leading to pore formation are still poorly understood, hampering the development of peptide-based nanotechnological applications, such as biosensors or catalytic compartments. To elucidate these interactions, we chose the model peptide melittin, the main component of bee venom. Here, we present our systematic investigation on how melittin interacts with and inserts into synthetic membranes, based on amphiphilic block copolymers, to induce pore formation in three different setups (planar membranes and micrometric and nanometric vesicles). By varying selected molecular properties of block copolymers and resulting membranes (e.g., hydrophilic to hydrophobic block ratio, membrane thickness, surface roughness, and membrane curvature) and the stage of melittin addition to the synthetic membranes, we gained a deeper understanding of melittin insertion requirements. In the case of solid-supported planar membranes, melittin interaction was favored by membrane roughness and thickness, but its insertion and pore formation were hindered when the membrane was excessively thick. The additional property provided by micrometric vesicles, curvature, increased the functional insertion of melittin, which was evidenced by the even more curved nanometric vesicles. Using nanometric vesicles allowed us to estimate the pore size and density, and by changing the stage of melittin addition, we overcame the limitations of peptideâEuro"polymer membrane interaction. Mirroring the functionality assay of planar membranes, we produced glucose-sensing vesicles. The design of synthetic membranes permeabilized with melittin opens a new path toward the development of biosensors and catalytic compartments based on pore-forming peptides functionally inserted in synthetic planar or three-dimensional membranes

    Energy dependence of the saturation scale and the charged multiplicity in pp and AA collisions

    Full text link
    A natural framework to understand the energy dependence of bulk observables from lower energy experiments to the LHC is provided by the Color Glass Condensate, which leads to a "geometrical scaling" in terms of an energy dependent saturation scale Q_s. The measured charged multiplicity, however, seems to grow faster (~\sqrt{s}^0.3) in nucleus-nucleus collisions than it does for protons (~\sqrt{s}^0.2), violating the expectation from geometric scaling. We argue that this difference between pp and AA collisions can be understood from the effect of DGLAP evolution on the value of the saturation scale, and is consistent with gluon saturation observations at HERA.Comment: RevTeX, 8 pages, 4 figures. V2: modified discussion of fragmentation, published in EPJ

    Odderon in baryon-baryon scattering from the AdS/CFT correspondence

    Get PDF
    Based on the AdS/CFT correspondence, we present a holographic description of various C-odd exchanges in high energy baryon-baryon and baryon-antibaryon scattering, and calculate their respective contributions to the difference in the total cross sections. We predict that, due to the warp factor of AdS_5, the total cross section in pp collisions is larger than in p\bar{p} collisions at asymptotically high energies.Comment: 23 pages, v2: minor changes, to be published in JHE

    Spin Relaxation in Single Layer Graphene with Tunable Mobility

    Full text link
    Graphene is an attractive material for spintronics due to theoretical predictions of long spin lifetimes arising from low spin-orbit and hyperfine couplings. In experiments, however, spin lifetimes in single layer graphene (SLG) measured via Hanle effects are much shorter than expected theoretically. Thus, the origin of spin relaxation in SLG is a major issue for graphene spintronics. Despite extensive theoretical and experimental work addressing this question, there is still little clarity on the microscopic origin of spin relaxation. By using organic ligand-bound nanoparticles as charge reservoirs to tune mobility between 2700 and 12000 cm2/Vs, we successfully isolate the effect of charged impurity scattering on spin relaxation in SLG. Our results demonstrate that while charged impurities can greatly affect mobility, the spin lifetimes are not affected by charged impurity scattering.Comment: 13 pages, 5 figure
    corecore