73 research outputs found
Photonic integration enabling new multiplexing concepts in optical board-to-board and rack-to-rack interconnects
New broadband applications are causing the datacenters to proliferate, raising the bar for higher interconnection speeds. So far, optical board-to-board and rack-to-rack interconnects relied primarily on low-cost commodity optical components assembled in a single package. Although this concept proved successful in the first generations of optical-interconnect modules, scalability is a daunting issue as signaling rates extend beyond 25 Gb/s. In this paper we present our work towards the development of two technology platforms for migration beyond Infiniband enhanced data rate (EDR), introducing new concepts in board-to-board and rack-to-rack interconnects.
The first platform is developed in the framework of MIRAGE European project and relies on proven VCSEL technology, exploiting the inherent cost, yield, reliability and power consumption advantages of VCSELs. Wavelength multiplexing, PAM-4 modulation and multi-core fiber (MCF) multiplexing are introduced by combining VCSELs with integrated Si and glass photonics as well as BiCMOS electronics. An in-plane MCF-to-SOI interface is demonstrated, allowing coupling from the MCF cores to 340x400 nm Si waveguides. Development of a low-power VCSEL driver with integrated feed-forward equalizer is reported, allowing PAM-4 modulation of a bandwidth-limited VCSEL beyond 25 Gbaud.
The second platform, developed within the frames of the European project PHOXTROT, considers the use of modulation formats of increased complexity in the context of optical interconnects. Powered by the evolution of DSP technology and towards an integration path between inter and intra datacenter traffic, this platform investigates optical interconnection system concepts capable to support 16QAM 40GBd data traffic, exploiting the advancements of silicon and polymer technologies
Studies on the readability and on the detection rate in a Mach-Zehnder interferometer-based implementation for high-rate, long-distance QKD protocols
We study the way that chromatic dispersion affects the visibility and the
synchronization on Quantum Key Distribution (QKD) protocols in a widely-used
setup based on the use of two fiber-based Mach-Zehnder (MZ) interferometers at
transmitter/receiver stations. We identify the necessary conditions for the
path length difference between the two arms of the interferometers for
achieving the desired visibility given the transmission distance -- where the
form of the detector's window can be considered. We also associate the above
limitations with the maximum detection rate that can be recorded in our setup,
including the quantum non-linearity phenomenon, and to the maximum time window
of the detector's gate. Exploiting our results we provide two methods,
depending on the clock rate of the setup, to perform chromatic dispersion
compensation techniques to the signal for keeping the correct order of the
transmitted symbols. At the end, we apply our theoretical outcomes in a more
realistic QKD deployment, considering the case of phase-encoding BB84 QKD
protocol, which is widely used. Our proposed methods, depending on the
transmission distance and on the photon emission rate at transmitter station,
can be easily generalized to every fiber-optic QKD protocol, for which the
discrimination of each symbol is crucial.Comment: 14 pages, 12 figure
Segmented optical transmitter comprising a CMOS driver array and an InP IQ-MZM for advanced modulation formats
Segmented Mach-Zehnder modulators are promising solutions to generate complex modulation schemes in the migration towards optical links with a higher-spectral efficiency. We present an optical transmitter comprising a segmented-electrode InP IQ-MZM, capable of multilevel optical signal generation (5-bit per I/Q arm) by employing direct digital drive from integrated, low-power (1W) CMOS binary drivers. We discuss the advantages and design tradeoffs of the segmented driver structure and the implementation in a 40 nm CMOS technology. Multilevel operation with combined phase and amplitude modulation is demonstrated experimentally on a single MZM of the device for 2-ASK-2PSK and 4-ASK-2-PSK, showing potential for respectively 16-QAM and 64-QAM modulation in future assemblies
A programmable, multi-format photonic transceiver platform enabling flexible optical networks
Development of programmable photonic devices for future flexible optical networks is ongoing. To this end, an innovative, multi-format QAM transmitter design is presented. It comprises a segmented-electrode InP IQ-MZM to be fabricated in InP, which can be directly driven by low-power CMOS logic. Arbitrary optical QAM format generation is made possible using only binary electrical signals, without the need for high-performance DACs and high-swing linear drivers. The concept enables a host of Tx-side DSP functionality, including the spectral shaping needed for Nyquist-WDM system concepts. In addition, we report on the development of an optical channel MUX/DEMUX, based on arrays of microresonator filters with reconfigurable bandwidths and center wavelengths. The device is intended for operation with multi-format flexible transceivers, enabling Dense (D)WDM superchannel aggregation and arbitrary spectral slicing in the context of a flexible grid environment
Subsystems for future access networks
Current evolution and tendencies of Telecom Networks in general and more specifically optical Metro and Access Networks and their convergence are reported. Based on this evolution, a set of research lines are foreseen regarding subsystems and devices as: high speed optical sources, modulators and receivers, for the next generation of Passive Optical Networks. The ICT project EURO-FOS is achieving European level cooperative research among academia and industry, enabling future telecommunication networks
High speed direct modulation of a heterogeneously integrated InP/SOI DFB laser
An integrated laser source to a silicon photonics circuit is an important requirement for optical interconnects. We present direct modulation of a heterogeneously integrated distributed feedback laser on and coupled to a silicon waveguide. We demonstrate a 28 Gb/s pseudo-random bit sequence non-return-to-zero data transmission over 2 km non-zero dispersion shifted fiber with a 1-dB power penalty. Additionally, we show 40-Gb/s duobinary modulation generated using the bandwidth limitation of the laser for both back-to-back and fiber transmission configurations. Furthermore, we investigate the device performance for the pulse amplitude modulation (PAM-4) at 20 GBd for high-speed short-reach applications
- …