242 research outputs found

    Study of orientation effect on nanoscale polarization in BaTiO3 thin films using piezoresponse force microscopy

    Get PDF
    We have investigated the effect of texture on in-plane (IPP) and out- of plane (OPP) polarizations of pulsed-laser-deposited BaTiO3 thin films grown on Pt and La0.5Sr0.5CoO3 (LSCO) buffered Pt electrodes. The OPP and IPP polarizations were observed by piezoresponse force microscopy (PFM) for three-dimensional polarization analyses in conjunction with conventional diffraction methods using x-ray diffraction and reflection high energy electron diffraction measurements. BaTiO3 films grown on Pt electrodes exhibited highly (101) preferred orientation with higher IPP component whereas BaTiO3 film grown on LSCO/Pt electrodes showed (001) and (101) orientations with higher OPP component. Measured effective d(33) values of BaTiO3 films deposited on Pt and LSCO/ Pt electrodes were 14.3 and 54.0 pm/ V, respectively. Local piezoelectric strain loops obtained by OPP and IPP-PFM showed that piezoelectric properties were strongly related to film orientation

    Majoritarian Blotto contests with asymmetric battlefields: an experiment on apex games

    Get PDF
    We investigate a version of the classic Colonel Blotto game in which individual battlefields may have different values. Two players allocate a fixed discrete budget across battlefields. Each battlefield is won by the player who allocates the most to that battlefield. The player who wins the battlefields with highest total value receives a constant winner payoff, while the other player receives a constant loser payoff. We focus on apex games, in which there is one large and several small battlefields. A player wins if he wins the large and any one small battlefield, or all the small battlefields. For each of the games we study, we compute an equilibrium and we show that certain properties of equilibrium play are the same in any equilibrium. In particular, the expected share of the budget allocated to the large battlefield exceeds its value relative to the total value of all battlefields, and with a high probability (exceeding 90% in our treatments) resources are spread over more battlefields than are needed to win the game. In a laboratory experiment, we find that strategies that spread resources widely are played frequently, consistent with equilibrium predictions. In the treatment where the asymmetry between battlefields is strongest, we also find that the large battlefield receives on average more than a proportional share of resources. In a control treatment, all battlefields have the same value and our findings are consistent with previous experimental findings on Colonel Blotto games

    End-Tagging of Ultra-Short Antimicrobial Peptides by W/F Stretches to Facilitate Bacterial Killing

    Get PDF
    BACKGROUND: Due to increasing resistance development among bacteria, antimicrobial peptides (AMPs), are receiving increased attention. Ideally, AMP should display high bactericidal potency, but low toxicity against (human) eukaryotic cells. Additionally, short and proteolytically stable AMPs are desired to maximize bioavailability and therapeutic versatility. METHODOLOGY AND PRINCIPAL FINDINGS: A facile approach is demonstrated for reaching high potency of ultra-short antimicrobal peptides through end-tagging with W and F stretches. Focusing on a peptide derived from kininogen, KNKGKKNGKH (KNK10) and truncations thereof, end-tagging resulted in enhanced bactericidal effect against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Through end-tagging, potency and salt resistance could be maintained down to 4-7 amino acids in the hydrophilic template peptide. Although tagging resulted in increased eukaryotic cell permeabilization at low ionic strength, the latter was insignificant at physiological ionic strength and in the presence of serum. Quantitatively, the most potent peptides investigated displayed bactericidal effects comparable to, or in excess of, that of the benchmark antimicrobial peptide LL-37. The higher bactericidal potency of the tagged peptides correlated to a higher degree of binding to bacteria, and resulting bacterial wall rupture. Analogously, tagging enhanced peptide-induced rupture of liposomes, particularly anionic ones. Additionally, end-tagging facilitated binding to bacterial lipopolysaccharide, both effects probably contributing to the selectivity displayed by these peptides between bacteria and eukaryotic cells. Importantly, W-tagging resulted in peptides with maintained stability against proteolytic degradation by human leukocyte elastase, as well as staphylococcal aureolysin and V8 proteinase. The biological relevance of these findings was demonstrated ex vivo for pig skin infected by S. aureus and E. coli. CONCLUSIONS/SIGNIFICANCE: End-tagging by hydrophobic amino acid stretches may be employed to enhance bactericidal potency also of ultra-short AMPs at maintained limited toxicity. The approach is of general applicability, and facilitates straightforward synthesis of hydrophobically modified AMPs without the need for post-peptide synthesis modifications

    An Experimental Investigation of Colonel Blotto Games

    Get PDF
    "This article examines behavior in the two-player, constant-sum Colonel Blotto game with asymmetric resources in which players maximize the expected number of battlefields won. The experimental results support all major theoretical predictions. In the auction treatment, where winning a battlefield is deterministic, disadvantaged players use a 'guerilla warfare' strategy which stochastically allocates zero resources to a subset of battlefields. Advantaged players employ a 'stochastic complete coverage' strategy, allocating random, but positive, resource levels across the battlefields. In the lottery treatment, where winning a battlefield is probabilistic, both players divide their resources equally across all battlefields." (author's abstract)"Dieser Artikel untersucht das Verhalten von Individuen in einem 'constant-sum Colonel Blotto'-Spiel zwischen zwei Spielern, bei dem die Spieler mit unterschiedlichen Ressourcen ausgestattet sind und die erwartete Anzahl gewonnener Schlachtfelder maximieren. Die experimentellen Ergebnisse bestätigen alle wichtigen theoretischen Vorhersagen. Im Durchgang, in dem wie in einer Auktion der Sieg in einem Schlachtfeld deterministisch ist, wenden die Spieler, die sich im Nachteil befinden, eine 'Guerillataktik' an, und verteilen ihre Ressourcen stochastisch auf eine Teilmenge der Schlachtfelder. Spieler mit einem Vorteil verwenden eine Strategie der 'stochastischen vollständigen Abdeckung', indem sie zufällig eine positive Ressourcenmenge auf allen Schlachtfeldern positionieren. Im Durchgang, in dem sich der Gewinn eines Schlachtfeldes probabilistisch wie in einer Lotterie bestimmt, teilen beide Spieler ihre Ressourcen gleichmäßig auf alle Schlachtfelder auf." (Autorenreferat

    Rab-GTPase binding effector protein 2 (RABEP2) is a primed substrate for Glycogen Synthase kinase-3 (GSK3)

    Get PDF
    Glycogen synthase kinase-3 (GSK3) regulates many physiological processes through phosphorylation of a diverse array of substrates. Inhibitors of GSK3 have been generated as potential therapies in several diseases, however the vital role GSK3 plays in cell biology makes the clinical use of GSK3 inhibitors potentially problematic. A clearer understanding of true physiological and pathophysiological substrates of GSK3 should provide opportunities for more selective, disease specific, manipulation of GSK3. To identify kinetically favourable substrates we performed a GSK3 substrate screen in heart tissue. Rab-GTPase binding effector protein 2 (RABEP2) was identified as a novel GSK3 substrate and GSK3 phosphorylation of RABEP2 at Ser200 was enhanced by prior phosphorylation at Ser204, fitting the known consensus sequence for GSK3 substrates. Both residues are phosphorylated in cells while only Ser200 phosphorylation is reduced following inhibition of GSK3. RABEP2 function was originally identified as a Rab5 binding protein. We did not observe co-localisation of RABEP2 and Rab5 in cells, while ectopic expression of RABEP2 had no effect on endosomal recycling. The work presented identifies RABEP2 as a novel primed substrate of GSK3, and thus a potential biomarker for GSK3 activity, but understanding how phosphorylation regulates RABEP2 function requires more information on physiological roles of RABEP2

    Ammonia-oxidizing archaea and ammonia-oxidizing bacteria in six full-scale wastewater treatment bioreactors

    Get PDF
    In this study, dideoxy sequencing and 454 high-throughput sequencing were used to analyze diversities of the ammonia monooxygenase (amoA) genes and the 16S rRNA genes of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in six municipal wastewater treatment plants. The results showed that AOB amoA genes were quite diverse in different wastewater treatment plants while the 16S rRNA genes were relatively conserved. Based on the observed complexity of amoA and 16S rRNA genes, most of the AOB can be assigned to the Nitrosomonas genus, with Nitrosomonas ureae, Nitrosomonas oligotropha, Nitrosomonas marina, and Nitrosomonas aestuarii being the four most dominant species. From the sequences of the AOA amoA genes, most AOA observed in this study belong to the CGI.1b group, i.e., the soil lineage. The AOB amoA and 16S rRNA genes were quantified by quantitative PCR and 454 high-throughput pyrosequencing, respectively. Although the results from the two approaches show some disconcordance, they both indicated that the abundance of AOB in activated sludge was very low

    A dual-fMRI investigation of the iterated Ultimatum Game reveals that reciprocal behaviour is associated with neural alignment

    Get PDF
    Dyadic interactions often involve a dynamic process of mutual reciprocity; to steer a series of exchanges towards a desired outcome, both interactants must adapt their own behaviour according to that of their interaction partner. Understanding the brain processes behind such bidirectional reciprocity is therefore central to social neuroscience, but this requires measurement of both individuals’ brains during realworld exchanges. We achieved this by performing functional magnetic resonance imaging (fMRI) on pairs of male individuals simultaneously while they interacted in a modifed iterated Ultimatum Game (iUG). In this modifcation, both players could express their intent and maximise their own monetary gain by reciprocating their partner’s behaviour – they could promote generosity through cooperation and/or discourage unfair play with retaliation. By developing a novel model of reciprocity adapted from behavioural economics, we then show that each player’s choices can be predicted accurately by estimating expected utility (EU) not only in terms of immediate payof, but also as a reaction to their opponent’s prior behaviour. Finally, for the frst time we reveal that brain signals implicated in social decision making are modulated by these estimates of EU, and become correlated more strongly between interacting players who reciprocate one another
    • …
    corecore