113 research outputs found

    Partial-Matching and Hausdorff RMS Distance Under Translation: Combinatorics and Algorithms

    Full text link
    We consider the RMS distance (sum of squared distances between pairs of points) under translation between two point sets in the plane, in two different setups. In the partial-matching setup, each point in the smaller set is matched to a distinct point in the bigger set. Although the problem is not known to be polynomial, we establish several structural properties of the underlying subdivision of the plane and derive improved bounds on its complexity. These results lead to the best known algorithm for finding a translation for which the partial-matching RMS distance between the point sets is minimized. In addition, we show how to compute a local minimum of the partial-matching RMS distance under translation, in polynomial time. In the Hausdorff setup, each point is paired to its nearest neighbor in the other set. We develop algorithms for finding a local minimum of the Hausdorff RMS distance in nearly linear time on the line, and in nearly quadratic time in the plane. These improve substantially the worst-case behavior of the popular ICP heuristics for solving this problem.Comment: 31 pages, 6 figure

    Partial-Matching RMS Distance Under Translation: Combinatorics and Algorithms

    Get PDF
    We consider the problem of minimizing the RMS distance (sum of squared distances between pairs of points) under translation between two point sets A and B, in the plane, with (Formula presented.), in the partial-matching setup, in which each point in B is matched to a distinct point in A. Although the problem is not known to be polynomial, we establish several structural properties of the underlying subdivision (Formula presented.) of the plane and derive improved bounds on its complexity. Specifically, we show that this complexity is (Formula presented.), so it is only quadratic in |A|. These results lead to the best known algorithm for finding a translation for which the partial-matching RMS distance between the point sets is minimized. In addition, we show how to compute a local minimum of the partial-matching RMS distance under translation, in polynomial time. © 2017 Springer Science+Business Media New Yor

    Galectin-3 Mediates Cross-Talk between K-Ras and Let-7c Tumor Suppressor microRNA

    Get PDF
    International audienceBACKGROUND: Galectin-3 (Gal-3) and active (GTP-bound) K-Ras contribute to the malignant phenotype of many human tumors by increasing the rate of cell proliferation, survival, and migration. These Gal-3-mediated effects result from a selective binding to K-Ras.GTP, causing increased nanoclustering in the cell membrane and leading to robust Ras signaling. Regulation of the interactions between Gal-3 and active K-Ras is not fully understood. METHODS AND FINDINGS: To gain a better understanding of what regulates the critical interactions between these two proteins, we examined the role of Gal-3 in the regulation of K-Ras by using Gal-3-knockout mouse embryonic-fibroblasts (Gal-3-/- MEFs) and/or Gal-3/Gal-1 double-knockout MEFs. We found that knockout of Gal-3 induced strong downregulation (∼60%) of K-Ras and K-Ras.GTP. The downregulation was somewhat more marked in the double-knockout MEFs, in which we also detected robust inhibition(∼50%) of ERK and Akt activation. These additional effects are probably attributable to inhibition of the weak interactions of K-Ras.GTP with Gal-1. Re-expression of Gal-3 reversed the phenotype of the Gal-3-/- MEFs and dramatically reduced the disappearance of K-Ras in the presence of cycloheximide to the levels seen in wild-type MEFs. Furthermore, phosphorylation of Gal-3 by casein kinase-1 (CK-1) induced translocation of Gal-3 from the nucleus to the cytoplasm and the plasma membrane, leading to K-Ras stabilization accompanied by downregulation of the tumor suppressor miRNA let-7c, known to negatively control K-Ras transcription. CONCLUSIONS: Our results suggest a novel cross-talk between Gal-3-mediated downregulation of let 7c microRNA (which in turn negatively regulates K-Ras transcription) and elucidates the association among Gal-3 let-7c and K-Ras transcription/translation, cellular compartmentalization and activity

    Decreased galectin-3 expression in prostate cancer

    Full text link
    BACKGROUND Galectin-3 is a carbohydrate-binding protein whose level of expression has been shown to be correlated with metastatic potential in a number of different tumor types. The purpose of this investigation was to examine galectin-3 expression in several tumorigenic and nontumorigenic prostate cell lines and prostate tissue samples. METHODS The expression of galectin-3 in cell lines and tissue samples was evaluated by tissue immunohistochemistry and Western blot analysis. RESULTS Human cell lines PC-3M, PC-3, DU-145, PrEC-1, and MCF10A demonstrated the presence of galectin-3. Galectin-3 was not detected in TSU-pr1 and LNCaP by Western blot analysis. We furthered our studies by examining a series of human prostate tissue samples for expression of galectin-3. Overall, approximately 60–70% of the normal tissue examined demonstrated heterogenous expression of galectin-3. In stage II tumors, however, there was a dramatic decrease in galectin-3 expression in both PIN and tumor sections, with only 10.5% (2/19) of these samples expressing this protein. Stage III tumors also demonstrated a decreased expression of galectin-3, although this downregulation was not as dramatic, with 35% of PIN samples and 52% of tumor tissue expressing galectin-3 ( P < 0.01). CONCLUSIONS These data demonstrate that galectin-3 is downregulated in prostate cancer. The altered downregulation pattern of galectin-3 observed between tumor stages suggests different roles for galectin-3 in the progression of prostate cancer. Prostate 44:118–123, 2000. © 2000 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34754/1/4_ftp.pd
    corecore