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Abstract We consider the RMS distance (sum of squared distances between
pairs of points) under translation between two point sets in the plane, in two
different setups. In the partial-matching setup, each point in the smaller set
is matched to a distinct point in the bigger set. Although the problem is not
known to be polynomial, we establish several structural properties of the un-
derlying subdivision of the plane and derive improved bounds on its complex-
ity. These results lead to the best known algorithm for finding a translation for
which the partial-matching RMS distance between the point sets is minimized.
In addition, we show how to compute a local minimum of the partial-matching
RMS distance under translation, in polynomial time. In the Hausdorff setup,
each point is paired to its nearest neighbor in the other set. We develop algo-
rithms for finding a local minimum of the Hausdorff RMS distance in nearly
linear time on the line, and in nearly quadratic time in the plane. These im-
prove substantially the worst-case behavior of the popular ICP heuristics for
solving this problem.
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1 Introduction

Let A and B be two finite sets of points in the plane, of respective cardinalities
n and m. We are interested in measuring the similarity between A and B,
under a suitable proximity measure. We consider two such measures where
the proximity is the sum of the squared distances between pairs of points. We
refer to the measured distance between the sets, in both versions, as the RMS
(Root-Mean-Square) distance. In the first, we assume that n ≥ m and we want
to match all the points of B (a specific pattern that we want to identify), in a
one-to-one manner, to a subset of A (a larger picture that “hides” the pattern)
of size |B|. This measure is called the partial-matching RMS distance. This is
motivated by situations where we want a one-to-one matching between features
of A and features of B [16,24,25]. In the second, each point is assigned to its
nearest neighbor in the other set, and we call it the Hausdorff RMS distance.
See [2] for a similar generalization of the Hausdorff distance. In both variants
the sets A and B are in general not aligned, so we seek a translation of one of
them that will minimize the appropriate RMS distance, partial matching or
Hausdorff.

1.1 The partial-matching RMS distance problem

Let A = {a1, . . . , an} and B = {b1, . . . , bm} be two sets of points in the
plane. Here we assume that m ≤ n, and we seek a minimum-weight maximum-
cardinality matching of B into A. This is a subset M of edges of the complete
bipartite graph with edge set B × A, so that each b ∈ B appears in exactly
one edge of M , and each a ∈ A appears in at most one edge. The weight of an
edge (b, a) is ‖b − a‖2, the squared Euclidean distance between b and a, and
the weight of a matching is the sum of the weights of its edges.

A maximum-cardinality matching can be identified as an injective assign-
ment π of B into A. With a slight abuse of notation, we denote by aπ(i) the
point aj that π assigns to bi. In this notation, the minimum RMS partial-
matching problem (for fixed locations of the sets) is to compute

M(B,A) = min
π:B→A injective

m∑
i=1

∥∥bi − aπ(i)∥∥2 .
Allowing the pattern B to be translated, we obtain the problem of computing
the minimum partial-matching RMS distance under translation, defined as

MT (B,A) = min
t∈R2

M(B + t, A) = min
t∈R2,π:B→A,
π injective

m∑
i=1

∥∥bi + t− aπ(i)
∥∥2 .

Here aπ(i) is the point of A assigned to bi + t; in this notation we hide the
explicit dependence on t, and assume it to be understood from the context.

The function F (t) := M(B + t, A) induces a subdivision of R2, where two
points t1, t2 ∈ R2 are in the same region if the minimum of F at t1 and at
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t2 are attained by the same set of assignments. We refer to this subdivision,
following Rote [20], as the partial-matching subdivision and denote it by DB,A.
We say that a matching is optimal if it attains F (t) for some t ∈ R2.

1.2 The Hausdorff RMS distance problem

Let NA(x) (resp., NB(x)) denote a nearest neighbor in A (resp., in B) of a
point x ∈ R2 breaking ties arbitrarily. The unidirectional (Hausdorff) RMS
distance between B and A is defined as

H(B,A) =
∑
b∈B
‖b−NA(b)‖2.

We also consider bidirectional RMS distances, in which we also measure dis-
tances from the points of A to their nearest neighbors in B. We consider two
variants of this notion. The first variant is the L1-bidirectional RMS distance
between A and B, which is defined as

H1(B,A) = H(A,B) + H(B,A).

The second variant is the L∞-bidirectional RMS distance between A and B,
and is defined as

H∞(B,A) = max {H(A,B),H(B,A)}.

Allowing one of the sets (say, B) to be translated, we define the minimum
unidirectional RMS distance under translation to be

HT (B,A) = min
t∈R2

H(B + t, A) = min
t∈R2

∑
b∈B
‖b+ t−NA(b+ t)‖2,

where B + t = {b1 + t, . . . , bm + t}. Similarly, we define the minimum L1- and
L∞-bidirectional RMS distances under translation to be

HT,1(B,A) = min
t∈R2

H1(B + t, A) and

HT,∞(B,A) = min
t∈R2

H∞(B + t, A).

1.3 Background

A thorough initial study of the minimum RMS partial-matching distance under
translation is given by Rote [20]; see also [11,21] for two follow-up studies,
another study in [18], and an abstract of an earlier version of parts of this
paper [15]. The resulting subdivision DB,A, as defined above, is shown in [20]
to be a subdivision whose faces are convex polygons. Rote’s main contribution
for the analysis of the complexity of DB,A was to show that a line crosses only
O(nm) regions of the subdivision (see Theorem 1 below). However, obtaining
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sharp bounds for the complexity of DB,A, in particular, settling whether this
complexity is polynomial or not, is still an open issue.

The problem of Hausdorff RMS minimization under translation has been
considered in the literature (see, e.g., [2] and the references therein), although
only scarcely so (compared to the extensive body of work on the standard
L∞-Hausdorff distance). If A and B are sets of points on the line, the com-
plexity of the Hausdorff RMS function, as a function of the translation t, is
O(nm) (and this bound is tight in the worst case). Moreover, the function can
have many local minima (up to Θ(nm) in the worst case). Hence, finding a
translation that minimizes the Hausdorff RMS distance can be done in brute
force, in O(nm log(nm)) time, but a worst-case near linear algorithm is not
known. In practice, though, there exists a popular heuristic technique, called
the ICP (Iterated Closest Pairs) algorithm, proposed by Besl and McKay [8]
and analyzed in Ezra et al. [13]. Although the algorithm is reported to be effi-
cient in practice, it might perform Θ(nm) iterations in the worst case. More-
over, each iteration takes close to linear time (to find the nearest neighbors in
the present location).

The situation is even worse in the plane, where the complexity of the
Hausdorff RMS function is O(n2m2), a bound which is worst-case tight, and
the bounds for the performance of the ICP algorithm, are similarly worse.
Similar degradation shows up in higher dimensions too; see, e.g., [13].

1.4 Our results

In this paper we study these two fairly different variants of the problem of
minimizing the RMS distance under translation, and improve the state of the
art in both of them.

In the partial-matching variant, we first analyze the complexity of the
subdivision DB,A. We significantly improve the bound from the naive O(nm)
to O(n2m3.5(e lnm + e)m). In particular, the complexity is only quadratic in
the size of the larger set, albeit still slightly superexponential in the size of the
smaller set. In addition, we provide the best known lower boundΩ(m2(n−m)2)
for the complexity of DB,A. Albeit being only polynomial in m, this bound is
tight with respect to n.

A preliminary informal exposition of this analysis by a subset of the authors
is given in the (non-archival) note [15]. The present paper expands the previous
note, derives additional interesting structural properties of the subdivision,
and significantly improves the complexity bound. The arguments that establish
the bound can be generalized to bound the number of regions (full-dimensional
cells) of the analogous subdivision in Rd by1 O

(
(n2m)d(e lnm+ e)m)/

√
m
)
.

The derivation of the upper bound proceeds by a reduction that connects
partial matchings to a combinatorial question based on a game-theoretical
problem, which we believe to be of independent interest.

1 Note that in two dimensions the first factor improves to (nm2)d = (nm2)2. See below
for details.
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Next we present a polynomial-time algorithm, that runs in O(n3m6 log n)
time, for finding a local minimum of the partial-matching RMS distance under
translation. This is significant, given that we do not have a polynomial bound
on the size of the subdivision. We also fill in the details of explicitly computing
the intersections of a line with the edges and faces of DB,A. Rote hinted at such
an algorithm in [20] but, exploiting some new properties of DB,A derived here,
we manage to compute the intersections in a simple, more efficient manner.

We also note that by combining the combinatorial bound for the complex-
ity of DB,A, along with the procedures in the algorithm for finding a local
minimum of the partial-matching RMS distance, it is possible to traverse all
of DB,A, and compute a global minimum of the partial-matching RMS dis-
tance in time O(n3m7.5(e lnm + e)m). This is the best known bound for this
problem.

For the Hausdorff variant, we provide improved algorithms for computing
a local minimum of the RMS function, in one and two dimensions. Assum-
ing |A| = |B| = n, in the one-dimensional case the algorithms run in time
O(n log2 n), and in the two-dimensional case they run in time O(n2 log2 n).
Our approach thus beats the worst-case running time of the ICP algorithm
(used for about two decades to solve this problem). The approach is an effi-
cient search through the (large number of) critical values of the RMS function.
The techniques are reasonably standard, although their assembly is somewhat
involved. This part of the work was partially presented in [5].

Note that in both the partial matching and the Hausdorff variants, our algo-
rithms primarily compute a local minimum of the corresponding objective func-
tion. It would naturally be more desirable to find the global minimum, but we
do not know how to achieve this without an exhaustive search through all pos-
sible combinatorially different translations (in both cases), which would make
the algorithms considerably less efficient, especially in the partial-matching
setting, as noted above. Concerning the effectiveness of computing a local
minimum, we make the following comments.

In the Hausdorff variant, the ICP algorithm, which we want to improve,
also constructs only a local minimum. In this regard, the developers of ICP
and other users of the technique have proposed several heuristic enhancements
(for a collection of these see [8,22]). In particular, starting the algorithm at a
translation that is sufficiently close to the global minimum is likely to converge
to that minimum. In real life applications, usually this can be done by human
assistance. Avoiding such manual input, an alternative exploitation of this idea
is to start the algorithm from several scattered initial placements, and hope
that one of these incarnations will lead to the global minimum.

These, and other similar heuristics can be applied, with suitable modifica-
tions, to our algorithms too. See a remark to that effect, later on in Section 4.6.

In particular, if the points of A and of B are in general, sufficiently sepa-
rated positions, one would expect the local minima to be sparse and sufficiently
separated, so the strategy of using a reasonable number of starting “seeds” that
are well separated and cover the relevant portion of the translation space, has
good chances of hitting the global minimum. Alternatively, it could be the case
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that the pattern B appears several times in A, so that each such appearance
has its own local minimum. In such cases it usually does not matter which
local minimum we hit, assuming that they are all more or less of the same
matching quality.

Other heuristics have also been proposed for the ICP algorithm. For ex-
ample, one could sample smaller subsets of the original point sets, run an
inefficient algorithm for finding the global minimum for the samples, and use
that as a starting translation. Heuristics of this kind can also be applied to
our algorithms.

2 Properties of DB,A

We begin by reconstructing several basic properties of DB,A that have been
noted by Rote in [20]. First, if we fix the translation t ∈ R2 and the assign-
ment π, the cost of the matching, denoted by f(π, t), is

f(π, t) =

m∑
i=1

∥∥bi + t− aπ(i)
∥∥2 = cπ + 〈t, dπ〉+m ‖t‖2 , (1)

where cπ =
∑m
i=1

∥∥bi − aπ(i)∥∥2 and dπ = 2
∑m
i=1(bi − aπ(i)). For t fixed, the

assignments that minimize f(π, t) are the same assignments that minimize
(π, t) 7→ cπ + 〈t, dπ〉. It follows that DB,A is the minimization diagram (the
xy-projection) of the graph of the function

EB,A(t) = min
π:B→A injective

(cπ + 〈t, dπ〉) , t ∈ R2.

This is the lower envelope of a finite number of planes, so its graph is a convex
polyhedron, and its projection DB,A is a convex subdivision of the plane, whose
faces are convex polygons. In particular, it follows that an assignment π can
be associated with at most one open region of the subdivision DB,A.

The great open question regarding minimum partial-matching RMS dis-
tance under translation, is whether the number of regions of DB,A is polyno-
mial in m and n. A significant, albeit small step towards settling this question
is the following result of Rote [20].

Theorem 1 (Rote [20]) A line intersects the interior of at most m(n−m)+1
different regions of the partial-matching subdivision DB,A.

Note that, even for t interior to a two-dimensional face of DB,A, more
than one matching can attain EB,A(t). That is, two different matchings can
have equal cost along an open set (and hence, everywhere) and be optimal
in it. Indeed, the vector dπ depends only on the centroid of the matched set.
Therefore, if two matchings have matched sets with the same centroid, and
they have the same cost for some translation t0 ∈ R2, the matchings have
the same cost everywhere. The solid and the dashed matchings displayed in
Figure 1 are thus both optimal over an open neighborhood of the depicted
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Fig. 1 Two optimal matchings, represented for three translations of B.

translations. Observe that these matchings use the same subset of points in A.
It will be shown later that this is in fact a necessary condition for two matchings
to be simultaneously optimal in the same open set.

The following property, observed by Rote [20], seems to be well known [25].

Lemma 1 For any A′ ⊆ A, with |A′| = m, the optimal assignments that
realize the minimum M(B + t, A′) are independent of the translation t ∈ R2.

Proof For A′ fixed, dπ is independent of π, so any assignment π that minimizes
cπ = EB,A(0) minimizes EB,A(t) for any t. ut

Next, we derive several additional properties of DB,A which show that the
diagram has, locally, low-order polynomial complexity.

Lemma 2 Every edge of DB,A has a normal vector of the form aj − ai for
suitable i 6= j ∈ {1, . . . , n}.

Proof Let E be an edge common to the regions associated with the injections
π, σ : B → A. By definition, f(π, t) = f(σ, t) ≤ f(δ, t) for every injection
δ : B → A and for any t ∈ E. So E is contained in the line

`(π, σ) := {t ∈ R2 | 〈t, dπ − dσ〉 = cσ − cπ}.

Let π4σ = (π \ σ) ∪ (σ \ π). It is easy to see that π4σ consists of a vertex-
disjoint union of alternating cycles and alternating paths; that is, the edges of
each cycle and path alternate between edges of π and edges of σ. Also, each
path (and, trivially, each cycle) is of even length. Let γ1, . . . , γp be these cycles
and paths. Every cycle and every path can be “flipped” independently while
preserving the validity of the matching; that is, we can choose, within any of
the γj ’s, either all the edges corresponding to π or all the ones corresponding
to σ, without interfering with other cycles or paths, so that the resulting
collection of edges still represents an injection from B into A. Observe now
that `(π, σ) = {t ∈ R2 | 〈t,∑p

j=1 dγj 〉 = −∑p
j=1 cγj}, where dγj is the sum

of the terms in dπ − dσ that involve only the ai ∈ A contained in γj and
cγj is analogously defined for cπ − cσ. Note that dγj is 0 for every cycle γj
and, therefore, at least one of the γj ’s is a path. (Otherwise, dπ − dσ = 0
and `(π, σ) is either empty or the entire plane, contrary to our assumptions.)
Then, we must have

〈
t, dγj

〉
= −cγj for all j = 1, . . . , p and every t ∈ `(π, σ).
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Otherwise, a flip in a path or a cycle violating this equation would contradict
the optimality of π or of σ along `(π, σ). Therefore, all the nonzero vectors dγj
must be orthogonal to `(π, σ). Hence, the direction of dπ − dσ is the same as
the one of dγj for every path γj . If a path, say γ1, starts at some aj and ends
at some ai, then dγ1 = aj − ai, which concludes the proof. ut

Remarks. It follows from the proof of Lemma 2 that dγ is 0 if and only if γ
is a cycle. This fact implies that, if two matchings have the same cost over an
open set, their symmetric difference consists only of cycles, which implies that
they match the same subset of A, as claimed above. Note also that if A is in
general position then π4σ has exactly one alternating path, and the pair ai,
aj is unique.

Lemma 3 (i) DB,A has at most 4m(n−m) unbounded regions.
(ii) Every region in DB,A has at most m(n−m) edges.

(iii) Every vertex in DB,A has degree at most 2m(n−m).
(iv) Any convex path can intersect at most m(n −m) + n(n − 1) regions of

DB,A.

Proof (i) Take a bounding box that encloses all the vertices of the diagram.
By Theorem 1, every edge of the bounding box crosses at most m(n−m) + 1
regions of DB,A. The edges of the box traverse only unbounded regions, and
cross every unbounded region exactly once, except for the coincidences of the
last region traversed by an edge and the first region traversed by the next
edge.

(ii) By Lemma 2, the normal vector of every edge of a region corresponding
to an injection π is a multiple of aj − ai for some ai ∈ π(B) and aj /∈ π(B).
There are exactly m(n−m) such possibilities.

(iii) Let v be a vertex of DB,A. Draw two generic parallel lines close enough
to each other to enclose v and no other vertex. Each edge adjacent to v is
crossed by one of the lines, and by Theorem 1 each of these lines crosses at
most m(n−m) edges.

(iv) We use the following property that was observed in Rote’s proof of
Theorem 1. Suppose that we translate B along a line in some direction v.
Rank the points of A by their order in the v-direction, i.e., a < a′ means that
〈a, v〉 < 〈a′, v〉 (for simplicity, assume that v is generic so there are no ties).
Let Φ denote the sum of the ranks of the m points of A that participate in an
optimal partial matching. As Rote has shown, whenever the set matched by
the optimal assignments changes, Φ must increase.

Now follow our convex path γ, which, without loss of generality, can be
assumed to be polygonal. As we traverse an edge of γ, Φ obeys the above
property, increasing every time we cross into a new region of DB,A. When we
turn (counterclockwise) at a vertex of γ, the ranking of A may change, but
each such change consists of a sequence of swaps of consecutive elements in
the present ranking. At each such swap, Φ can decrease by at most 1. Since γ
is convex, each pair of points of A can be swapped at most twice, so the total
decrease in Φ is at most 2

(
n
2

)
= n(n− 1).
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In conclusion, the accumulated increase in Φ, and thus also the total num-
ber of regions of DB,A crossed by γ, is at most(
n+(n−1)+. . .+(n−m+1)

)
−
(

1+2+. . .+m
)

+n(n−1) = m(n−m)+n(n−1),

as desired. ut

Remark. In order to gain better understanding of how the potential Φ, in-
troduced in the proof of Lemma 3(iv), changes when the set B is translated
along a convex path, consider a standard dual construction [7], where the
points a ∈ A are mapped to lines a∗ in the following manner:

a = (ax, ay) 7−→ y = ayx+ ax.

The duality is order preserving in the sense that, given two points a1, a2, and
a direction u = (ux, uy) with ux > 0 in the primal plane, then it can be easily
checked that 〈a2, u〉 > 〈a1, u〉 if and only if a2 is above a1 at the x-coordinate
that corresponds to uy/ux in the dual plane, i.e., to the direction of u. Thus,
we get an arrangement of n lines, in which the heights of the lines at any
x-coordinate in the dual plane represent the order of the points of A along the
corresponding direction in the primal plane; see Figure 2 for an illustration.

u3

u1

a1

a∗1

a∗4

a∗3

a∗2

a3

a4
a2

u2

u3 u1u2

Fig. 2 An example for a convex path with three highlighted directions, a set of four given
points, and the resulting dual arrangement. The order (a4, a3, a2, a1) of the points in the
primal x-direction corresponds to the order of the intercepts of the dual lines on the y-axis.

Furthermore, for each point on a convex path, we can mark at the corre-
sponding x-coordinate in the dual plane, the m dual lines that correspond to
the m points which are currently (optimally) matched. By the observations in
the proofs for Rote’s Theorem 1 in [20], if the subset A′ of A matched by the
optimal matching changes, it must be that some point a− ∈ A′ is replaced by
a point a+ ∈ A \A′ further in the direction of the line. Indeed, there is such a
pair for each path in the symmetric difference of the old and the new match-
ings. In our dual setting, it simply means that when a matching changes, the
points sitting on the dual lines of the matched points of A can only skip up-
wards to a line that passes above them. The sum of the indices of the marked
lines (those that participate in the matching) is exactly the sum of the ranks
defined in the proof of Theorem 1.
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This dual setting also demonstrates how and when Φ could drop — it
happens in a direction orthogonal to the direction dual to an intersection
point of two dual lines, and thus the height of a matched point (its rank)
can drop by 1. If one can bound the amount of such drops, i.e., for m points
moving along the n dual lines, from left to right, skipping from line to line only
upwards, then it immediately gives a bound for the number of intersections of
a convex path with DB,A. Unfortunately, an almost quadratic lower bound for
the complexity of such monotone paths was in fact presented in [4], and thus
it seems hopeless to get a significantly better upper bound for the amount of
intersections of a convex path with DB,A without exploiting any additional
geometric properties.

3 Bounds on the complexity of DB,A

In this section, we focus on establishing a global bound on the complexity
of the diagram DB,A. We begin by deriving the following technical auxiliary
results.

Lemma 4 Let π be an optimal matching for a fixed translation t ∈ R2 such
that ‖bp + t− ar‖ 6= ‖bp + t− as‖ for all p ∈ {1, . . . ,m} and r, s ∈ {1, . . . , n}
with r 6= s.

(i) There is no cyclic sequence (i1, i2, . . . , ik, i1) satisfying
‖bij + t− aπ(ij)‖ > ‖bij + t− aπ(ij+1)‖ for all j ∈ {1, . . . , k} (modulo k).

(ii) Each point of B + t is matched to one of its m nearest neighbors in A.
(iii) At least one point in B + t is matched to its nearest neighbor in A.
(iv) There exists an ordering (b1, . . . , bm) of the elements of B, such that each

bk + t is assigned by π to its nearest neighbor in A\{(bπ(1), . . . , bπ(k−1)},
for k = 1, . . . ,m. In particular, bk is assigned to one of its k nearest
neighbors in A, for k = 1, . . . ,m.

Proof (i) For the sake of contradiction, we assume that there exists a cyclic se-
quence that satisfies all the prescribed inequalities. Consider the assignment σ
defined by σ(ij) = π(ij+1) for all j ∈ {1, . . . , k} (modulo k) and σ(`) = π(`) for
all other indices `. Since π is a one-to-one matching, we have that π(ij) 6= π(ij′)
for all distinct j, j′ ∈ {1, . . . , k} and, consequently, σ is one-to-one as well. It
is easily checked that f(σ, t) < f(π, t), contradicting the optimality of π.

(ii) For contradiction, assume that, for some point b ∈ B, b + t is not
matched by π to one of its m nearest neighbors in A. Then, at least one of
these neighbors, say a, cannot be matched (because these m points can be
claimed only by the remaining m−1 points of B+ t). Thus, we can reduce the
cost of π by matching b+ t to a, a contradiction that establishes the claim.

(iii) Again we assume for contradiction that π does not match any of the
points of B + t to its nearest neighbor in A. We construct the following cyclic
sequence in the matching π. We start at some arbitrary point b1 ∈ B, and
denote by a1 its nearest neighbor in A (to simplify the presentation, we do not
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explicitly mention the translation t in what follows). By assumption, b1 is not
matched to a1. If a1 is also not claimed in π by any of the points of B, then b1
could have claimed it, thereby reducing the cost of π, which is impossible. Let
then b2 denote the point that claims a1 in π. Again, by assumption, a1 is not
the nearest neighbor a2 of b2, and the preceding argument then implies that
a2 must be claimed by some other point b3 of B. We continue this process, and
obtain an alternating path (b1, a1, b2, a2, b3, . . .) such that the edges (bi, ai) are
not in π, and the edges (bi+1, ai) belong to π, for i = 1, 2, . . .. The process must
terminate when we reach a point bk that either coincides with b1, or is such
that its nearest neighbor is among the already encountered points ai, i < k.
We thus obtain a cyclic sequence as in part (i), reaching a contradiction.

(iv) Start with some point b1 ∈ B such that b1 + t goes to its nearest
neighbor a1 in A in the optimal partial matching π; such a point exists by
part (iii). Delete b1 from B, and a1 from A. The restriction of π to the points
in B \ {b1} is an optimal matching for B \ {b1} and A \ {a1} (relative to t),
because otherwise we could have improved π itself. We apply part (iii) to
the reduced sets, and obtain a second point b2 ∈ B \ {b1} whose translation
b2 + t is matched to its nearest neighbor a2 in A \ {a1}, which is either its
first or second nearest neighbor in the original set A. We keep iterating this
process until the entire set B is exhausted. At the k-th step we obtain a point
bk ∈ B \ {b1, . . . , bk−1}, such that the nearest neighbor ak in A\{a1, . . . , ak−1}
is matched to bk by π. ut

Observe that the geometric properties in Lemma 4 can be interpreted in
purely combinatorial terms. That is, for t fixed, associate with each bi ∈ B
an ordered list Lt(bi), called its preference list, which consists of the points of
A sorted by their distances from bi + t. A matching π : B ↪→ A is said to be
better than another (distinct) matching σ : B ↪→ A if either π(b) = σ(b) or
π(b) appears before σ(b) in the preference list of b, for each b ∈ B. A matching
is called Pareto efficient (hereafter, efficient, for short) if there is no better
matching. For the balanced case,2 where m = n, being efficient is equivalent
to the non-existence of a cycle as in Lemma 4(i) (see [23]). In the unbalanced
case, where we have m < n ordered lists on n elements, these properties are
not equivalent. However, we now give a simple proof of the fact that optimal
matchings are efficient.

Lemma 5 Let t ∈ R2 be such that ‖bp + t − ar‖ 6= ‖bp + t − as‖ for all
p ∈ {1, . . . ,m} and r, s ∈ {1, . . . , n} with r 6= s. Every optimal matching for t
is an efficient matching for the corresponding set L = {Lt(bi) | i ∈ {1, . . .m}}
of preference lists.

Proof Let π be an optimal matching for B+ t and A. If π is not efficient for L,
there is a better matching. That is, there exists a matching σ 6= π such that
for all bi ∈ B either σ(bi) = π(bi) or σ(bi) appears before π(bi) in Lt(bi). Then

2 For the case m = n, the problem of finding an efficient matching was studied in the
game theory literature under the name of the House Allocation Problem.
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‖bi + t − σ(bi)‖2 ≤ ‖bi + t − π(bi)‖2 for all bi ∈ B and, since σ 6= π, we have
f(σ, t) < f(π, t), which contradicts the optimality of π. ut

Note also that the proofs of parts Lemma 4(ii)–(iv) can be carried out in
this abstract setting, and hold for any efficient matching where there are no ties
in the preference lists. Part (iv) immediately yields an upper bound of m! on
the number of efficient matchings and, in addition, implies that only the first
m elements of each Lt(bi) are relevant. A similar bound for the balanced case is
implicitly implied by the results in [1]. The bound is tight for the combinatorial
problem, since if the ordered lists all coincide there are m! different efficient
matchings.

A recent study, motivated by the extended abstract [15], the precursor
of this work, considers this combinatorial problem and derives the following
result.

Lemma 6 (Asinowski et al. [3]) The number of elements that belong to
some efficient matching with respect to m ordered preference lists is at most
m(lnm+ 1).

The properties derived so far imply the following significantly improved upper
bound on the complexity of DB,A.

Theorem 2 The combinatorial complexity of DB,A is O(n2m3.5(e lnm+e)m).

Proof The proof has two parts. First, we identify a convex subdivision K such
that in each of its regions the first m elements of each of the ordered preference
lists Lt(b) of neighbors of each b + t, according to their distance from b + t,
are fixed for all b ∈ B, and appear in a fixed order in the list. We show that
the complexity of K is only polynomial; specifically, it is O(n2m4). Second,
we give an upper bound on how many regions of DB,A can intersect a given
region of K, using Lemma 6. Together, these imply an upper bound on the
complexity of DB,A.

In order to bound the complexity of K, fix b ∈ B, and consider the coarser
subdivision V(b, A), in which only the single list Lt(b) is required to be fixed
within each cell. A naive way of bounding the complexity of V(b, A) is to draw
all the O(n2) bisectors between the pairs of points in A − b, and form their
arrangement. Each cell of the arrangement has the desired property, as is easily
checked. As a matter of fact, this naive analysis can be applied to the entire
structure, over all b ∈ B, in which the arrangement obtained for the individual
members b ∈ B are overlayed into one common arrangement. Altogether there
are O(n2m) such bisectors, and their arrangement thus consists of O(n4m2)
regions.

We obtain an improved bound of O(n2m4) on the complexity ofK. For this,
note that it suffices to draw only relevant portions of some of the bisectors.
Specifically, let b ∈ B and a, a′ ∈ A. In view of Lemma 4(ii), we need to
consider only the portion of the bisector βa−b,a′−b between a − b and a′ − b
that consists of those points t such that a and a′ are among the m nearest
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neighbors of b + t in A; other portions of the bisector are “transparent” and
have no effect on the structure of K.

In general, the relevant portion of a bisector βa−b,a′−b need not be con-
nected. To simplify the analysis, we will bound the number of (entire) bisectors
of this form whose relevant portion is nonempty. Moreover, we will carry out
this analysis for each b ∈ B separately.

This analysis can be carried out via the Clarkson-Shor technique [9], albeit
in a somewhat non-standard manner. Specifically, with b fixed, we have the set
A of n points, and a system of bisectors βa−b,a′−b, each defined by two points
a, a′ ∈ A. Each bisector βa−b,a′−b has a conflict set, which we define to be a
smallest subset A′ of A, such that there exists a point t on the bisector, such
that the two nearest neighbors of b+t in A\A′ are a and a′. Clearly, the conflict
set is not uniquely defined, but this is fine for the Clarkson-Shor technique to
apply, because, if we draw a random sample R of A, it still holds that the
probability that βa−b,a′−b will generate an edge of the Voronoi diagram of
R− b is at least the probability that a and a′ are chosen in R and none of the
points in the specific conflict set is chosen. This lower bound suffices for the
Clarkson-Shor technique to apply, and it implies that the number of bisectors
that contribute a portion to V(b, A) (each of which has a conflict set of size at
most m) is O(m2) times the complexity of the Voronoi diagram of R − b, for
a random sample R of n/m points of A. That is, the number of such bisectors
is O(nm), instead of the number O(n2) of all bisectors. Summing over b ∈ B,
we obtain a total of O(nm2) bisectors instead of O(n2m). The claim about
the complexity of K is now immediate.

We now consider all possible translations t in the interior of some fixed
region τ of K and their corresponding optimal matchings. Lemma 5 ensures
that all of them must be efficient with respect to the fixed preference lists
Lt(b), for b ∈ B. In addition, Lemma 1 ensures that we only need to bound the
number of different image sets of such efficient matchings. Using the bound in
Lemma 6, we can derive that the number of optimal matchings for translations
in τ is then at most(

m(lnm+ 1)

m

)
≤ mm(lnm+ 1)m

m!
= O

(
(e lnm+ e)m√

m

)
,

where in the second step we used Stirling’s approximation. Hence, by multi-
plying this bound by the number of regions in K, we conclude that the number
of assignments corresponding to optimal matchings, and thus also the com-
plexity of DB,A, is at most O(n2m3.5(e lnm+ e)m). ut

The following proposition sets an obstruction for the combinatorial ap-
proach alone to yield a polynomial bound for DB,A.

Proposition 1 For every n ≥ bm2 c + m, there exist m preference lists, with

elements in {1, . . . , n}, with Ω
(

2m√
m

)
different images of efficient matchings.
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Proof We construct a set of lists such that for every i ∈ {1, . . . ,m} the bm2 c
smallest elements are the same (and appearing in the same order); we denote
by S the set of these elements. For the position bm2 c + 1 of the lists, we use
a set S′ of m distinct elements such that S ∩ S′ = ∅. Given a permutation λ
of {1, . . . ,m}, consider the matching assigning to each i ∈ {1, . . . ,m} the
first element in its list, in the order λ, that was not assigned to any previous
element. It is easy to see that this matching is efficient and that its image
consists of S and the subset of S′ corresponding to the last dm2 e positions
of λ. Therefore, every subset of S′ of size dm2 e is, together with S, the image

of an efficient matching. Hence,
(
m
dm2 e

)
= Ω

(
2m√
m

)
different sets correspond to

images of efficient matchings. ut

We now derive a lower bound on the complexity of DB,A. Consider the
arrangement K introduced in the proof of Theorem 2, and note that in the
interior of each of its two-dimensional faces the sequence of the first m points
of A closest to bi is fixed, and uniquely defined, for all bi ∈ B. Any optimal
matching in the interior of a two-dimensional face of K must be efficient for the
corresponding preference lists. We will provide a pair of point sets generating
many different preference lists that, in addition, have disjoint sets of efficient
matchings. In order to prove it, we need first the following property of the
efficient matchings of a certain type of preference lists.

Lemma 7 Let L be a set of preference lists Lt(bi), for bi ∈ B, and let
{a1, . . . , am} be a subset of m distinct points of A, satisfying the following
conditions, for some 0 ≤ j ≤ m− 1.

(a) Lt(bi) starts with (a1, a2, . . . , aj), for i = 1, . . . , j.
(b) Lt(bj+1) starts with aj+1.
(c) Lt(bi) starts with (aj+2, . . . , am), for i = j + 2, . . . ,m.

Then, every efficient matching for L, matches B to {a1, . . . , am}.

Proof Let π : B → A be an efficient matching for L. We prove the stronger
claim that

π(bi) ∈ {a1, . . . , aj}, for i = 1, . . . , j, (2)

π(bj+1) = aj+1, and

π(bi) ∈ {aj+2, . . . , am}, for i = j + 2, . . . ,m.

For this, we apply the adaptation of Lemma 4(iv) to the abstract setting, by
which there exists an ordering (bi1 , . . . , bim) of the elements of B, such that
each bik is assigned by π to the most preferred element in Lt(bik) that is not
already claimed by one of bi1 , . . . , bik−1

, the elements preceding bik in this
ordering.

Consider the minimal index k0 for which one of the assertions in (2) is
violated. If ik0 = j + 1, then, by the property of the ordering, there exists
another element bik , with k < k0, such that π(bik) = aj+1. This violates (2).
This contradicts the minimality of k0, so k0 6= j + 1.
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k − 1
k − 1

AB
(a) Point sets on the line.

l(k − 1)

2l(k − 1)

B2

B1

2l(k − 1)

l(k − 1)

A2

A1

(b) Point sets in the plane.

Fig. 3 Construction of the lower bound example of Theorem 3.

Similarly, assume 1 ≤ ik0 ≤ j. By the property of the ordering, it must
be that k0 > j, and there exist j elements bik1

, . . . , bikj
, with k1, . . . , kj < k0,

such that π(bikl
) = al, for l = 1, . . . , j. Since 1 ≤ ik0 ≤ j, necessarily one of

k1, . . . , kl is larger than j. This means that (2) is violated for some ik < k0,
which again leads to a contradiction. The case where k0 > j is symmetric and
can be treated in the same manner. ut

Theorem 3 For any m,n ∈ N with n ≥ m ≥ 2, there exist planar point sets
A,B with |B| = m and |A| = n such that its partial-matching diagram DB,A
has Ω(m2(n−m)2) regions.

Proof We describe first a construction similar to the one used for the lower
bound in Rote [20]. Let l < k be two integer parameters. Let A be the set of
k points on the line with coordinates

(l − 1)(k − 1), (l − 1)(k − 1) + 1, . . . , l(k − 1),

and let B be the set of l points with coordinates

0, k − 1, 2(k − 1), . . . , (l − 1)(k − 1),

as depicted in Figure 3(a). Enumerate the points of A as a1, . . . , ak and those
of B as b1, . . . , bl in their left-to-right order. Note that, for every point in B,
the l closest points of A are the l leftmost points a1, . . . , al (in this order).
We start moving B to the right. During the motion, exactly one point bj of
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B lies “inside” A (until all the points of B have crossed A), and bj traverses
all the Voronoi regions of a1, . . . , ak in this order. Fix 1 ≤ j ≤ l − 1, j + 1 ≤
i ≤ k − l + j + 1, and consider the instance of the motion when bj+1 crosses
the Voronoi region of ai. At this translation t, the j closest neighbors in A
of every bj′ , j

′ ≤ j, are the j leftmost points a1, . . . , aj , and the l − j − 1
closest neighbors of every bj′ , j

′ ≥ j + 2, are the l − j − 1 rightmost points
ak−l+j+2, . . . , ak. By Lemma 7, in an efficient matching of B + t to A, the
matched subset of A is {a1, . . . , aj , ai, ak−l+j+2, . . . , ak}. We thus obtain at
least l(k − l) distinct optimal matchings.

In order to construct the two-dimensional instance, we assume for simplic-
ity that m = 2l and n = 2k are even, and construct the following copies of the
sets A and B.

A1 = {(lk − l − k + t, 0) | t ∈ {1, . . . , k}},
A2 = {(0, lk − l − k + t) | t ∈ {1, . . . , k}},
B1 = {((t− 1)(k − 1),−2l(k − 1)) | t ∈ {1, . . . , l}},
B2 = {(−2l(k − 1), (t− 1)(k − 1)) | t ∈ {1, . . . , l}};

see Figure 3(b). Set A = A1∪A2 and B = B1∪B2. For s = 1, 2, enumerate the

elements of As as a
(s)
1 , . . . , a

(s)
k , and those of Bs as b

(s)
1 , . . . , b

(s)
l , in increasing

order of the varying coordinate. We claim that for every choice of

1 ≤ j1, j2 ≤ l − 1

j1 + 1 ≤ i1 ≤ k − l + j1 + 1,

j2 + 1 ≤ i2 ≤ k − l + j2 + 1,

there exists a translation t = (t1, t2), at which the elements of Bs + t are

matched to the subset {a(s)1 , . . . , a
(s)
js
, a

(s)
is
, a

(s)
k−l+js+2, . . . , a

(s)
k } of As, for s =

1, 2. Indeed, take t1 to be any horizontal translation at which B1 is matched

to {a(1)1 , . . . , a
(1)
j1
, a

(1)
i1
, a

(1)
k−l+j1+2, . . . , a

(1)
k }, as provided in the one-dimensional

construction. (Note that the fact that B1 and A1 are not collinear does not
matter, because the order of distances in (B1+t1)×A1 is the same as the order
that would arise if we projected B1 + t1 onto the line (x-axis) containing A1.)
We define t2 in a fully symmetric manner. The claim holds because, for any
such t, the distance between any point b ∈ B1 + t to any point of A2 is larger
than any of the distances between b and the points of A1, and, symmetrically,
the distance between any b ∈ B2 + t to any point of A1 is larger than any
of its distances to the points of A2. Indeed, the largest translation of B1 to
the right, until (the x-projection of) all its points cross A1 is l(k − 1), and a
symmetric claim holds for B2 and A2. Hence, for any relevant t = (t1, t2), the
points of B2 are at distance 2l(k − 1) − t1 to the left of the y-axis, so their
distances from the points of A1 are at least

2l(k − 1)− t1 + l(k − 1)− (k − 1) = (3l − 1)(k − 1)− t1;

see the right part of Figure 3(b). On the other hand, the largest distance of
a point of B2 + t from the points of A2 is at most (again, see Figure 3(b))
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(2l(k − 1)− t1)2 + (l(k − 1))2. Since t1 ≤ l(k − 1), straightforward calcula-

tion shows that
√

(2l(k − 1)− t1)2 + (l(k − 1))2 < (3l−1)(k−1)−t1, provided
that l is at least some small absolute constant. This establishes the claim, and
shows that the number of efficient matchings in this case is at least

(l(k − l))2 =
1

4
m2(n−m)2,

as asserted. The example can be easily perturbed such that A∪B is in general
position. ut

4 The partial-matching RMS distance under translation

We now concentrate on the algorithmic problem of computing, in polynomial
time, a local minimum of the partial-matching RMS distance under transla-
tion. Before going into the implementation details, we describe the main ideas
of the algorithm.

4.1 The high-level algorithm

We “home in” on a local minimum of F (t) by maintaining a vertical slab I
in the plane that is known to contain such a local minimum in its interior,
and by repeatedly shrinking it until we obtain a slab I∗ that does not contain
any vertex of DB,A. That is, any (vertical) line contained in I∗ intersects the
same sequence of regions, and, by Theorem 1, the number of these regions is
O(nm). We then find an optimal partial matching assignment in each region,
applying the Hungarian algorithm described in the next subsection, and the
corresponding explicit (quadratic) expression of F (t), and search for a local
minimum within each region.

A major component of the algorithm is a procedure, that we call Π1(`),
which, for a given input line `, constructs the intersection of DB,A with `,
computes a global minimum t∗ of F on `, and determines a side of `, in which
F attains strictly smaller values than F (t∗). If no such decrease is found in
the neighborhood of t∗ then it is a local minimum of F , and we stop.

We use this “decision procedure” as follows. Suppose we have a current
vertical slab I, bounded on the left by a line `− and on the right by a line `+.
We assume that Π1 has been executed on `− and on `+, and that we have
determined that F assumes smaller values than its global minimum on `− to
the right of `−, and that it assumes smaller values than its global minimum
on `+ to the left of `+. As we argue below, this implies that F has a local
minimum in the interior of I. Let ` be some vertical line passing through I. We
run Π1 on `. If it determines that F attains smaller values to its left (resp.,
to its right), we shrink I to the slab bounded by `− and ` (resp., the slab
bounded by ` and `+). By what will be argued below, this ensures that the
new slab also contains a local minimum of F in its interior.
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We note that by restricting the problem to a line ` in the decision procedure
described above we face a one-dimensional version of the problem. However,
here it does not suffice to find a local minimum over `. To see why, consider
the following situation (as illustrated in Figure 4): Let I be a slab of the
form x1 ≤ x ≤ x2 in the plane, and let q1 and q2 be local minima of F
on {(x1, s) | s ∈ R} (with ∂F

∂x (q1) < 0) and on {(x2, s) | s ∈ R} (with
∂F
∂x (q2) > 0), respectively. Then we cannot conclude that I contains a local
minimum. Indeed, it might be the case that the negative slope (in the x-
direction) at q1 points to a minimal point to the right of x2, and the positive
slope at q2 points to a minimal point to the left of x1, while the slab itself does
not contain any local minimum. However, if q1 and q2 are global minima, and
the signs of the derivatives are as before, a local minimum must exist within
the slab. Indeed, it is easily checked that I contains a minimum point of F
(restricted to I), simply because F tends to +∞ as |y| → ∞. The conditions
on the derivatives at q1, q2 indicate that this minimum is not attained on the
boundary of I, and thus it must be a local minimum. The description so far
has assumed that the slab is bounded on the left and on the right, but the
argument works equally well for semi-unbounded slabs.

Nothing has so far been said about the concrete choice of the “middle”
line `. This will be spelled out in the detailed description of the algorithm,
which now follows.

q1

q2

F (x1, s)

F (x2, s)

Fig. 4 The function F restricted to a slab. The graphs of F over the two lines bounding
the slab are highlighted, with two boundary local minima q1 and q2 satisfying ∂F

∂x
(q1) < 0,

∂F
∂x

(q2) > 0. However, there is no local minimum inside the slab.

To initialize the slab, we choose an arbitrary horizontal line λ, and run Π1

on λ, to find the sequence S of its intersection points with the edges of DB,A.
We run a binary search through S, where at each step we execute Π1 on the
vertical line through the current point. When the search terminates, we have
a vertical slab I0 whose intersection with λ is contained in a single region σ0
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of DB,A. (Note that I0 might be semi-unbounded, if it lies to the left of the
leftmost intersection, or to the right of the rightmost intersection, of λ with
the edges of DB,A.)

σ0

I0

I1

σ1

λ

Fig. 5 Shrinking the slab from I0 to I1.

After this initialization, we find the region σ1 that lies directly above σ0
and that the final slab I∗ should cross3. In general, there are possibly many
regions that lie above σ0, but fortunately, by Lemma 3(ii), their number is
only at most m(n−m).

To find σ1, we compute the boundary of σ0; this is done similarly to the
execution of Π1 (see details in Subsection 4.3). Once we have explored the
boundary of σ0, we take the sequence of all vertices of σ0, and run a Π1-
guided binary search on the vertical lines passing through them, exactly as we
did with the vertices of S, to shrink I0 into a slab I1, so that the top part of
the intersection of σ0 with I1 is a (portion of a) single edge. This allows us
to determine σ1, which is the region lying on the other (higher) side of this
edge. See Figure 5 for an illustration. A symmetric variant of this procedure
will find the region lying directly below σ0 in the final slab.

We repeat the previous step to find the entire stack of O(nm) regions
that I∗ crosses, where each step shrinks the current slab and then crosses to
the next region in the stack. Once this is completed, we find a local minimum
within I∗ as explained above. (The reader should keep in mind that the pro-
cedure can, and will, stop at any time when the line on which Π1 is run is
found to contain a local minimum of F .)

4.2 Partial matching at a fixed translation: The Hungarian
algorithm

The Hungarian method, developed by Kuhn in 1955 [17], is an efficient proce-
dure for computing a perfect maximum weight (or, for us, minimum weight)
bipartite matching between two sets A,B of equal size m, with running time
O(m4), which has been improved to O(m3) by Edmond and Karp [12]. The

3 Since we only seek a local minimum of F , I∗ is not unique in general. When we speak
of the final slab, we simply mean the one produced by our procedure.
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original algorithm proceeds iteratively, starting with an empty set M0 of
matched pairs. In the i-th iteration it takes the current set Mi−1 of i − 1
matched pairs, and transforms it into a set Mi with i matched pairs, until it
obtains the desired optimal perfect matching with m pairs.

Let us sketch the technique for minimum-weight matching, which is the
one we want. The i-th iteration is implemented as follows. Define D to be the
(bipartite) directed graph, with vertex set A ∪ B, whose edges are the edges
of Mi−1 directed from B to A, and the edges of (A×B) \Mi−1, directed from
A to B. We look for an augmenting path p that starts at B and ends at A,
of minimum weight, and we set Mi := Mi−14p (here 4 denotes symmetric
difference).

Ramshaw and Tarjan [19] proposed and analyzed an adaptation of the
Hungarian Method to unbalanced bipartite graphs. They used a modification
of Dijkstra’s algorithm, as described in [14], for finding the augmenting paths.
The analysis of the careful implementation of the Hungarian method that they
propose yields a running time of O(nm2) for graphs with vertex sets of sizes
m and n, respectively, assuming m ≤ n.

Hence, to recap, given a translation t, we can compute M(B+ t, A) by the
above algorithm, where the weight of an edge (a, b) ∈ A × B is ‖b + t − a‖2.
We denote this procedure as Π0(t); its output is the set of matched pairs, or,
in our notation, the injective assignment π : B → A.

4.3 Computing the boundary of σ0

Let σ0 be an open region of DB,A, and let A0 ⊆ A be the set of the m
matched points of A, for translations t ∈ σ0. A0 can be computed by picking
some translation t0 (interior to) σ0, and then by running Π0(t0), for finding an
optimal matching M0 for the translation t0 in time O(nm2). By Lemma 2, we
know that there are O(nm) possible directions for the bisectors forming ∂σ0.
Moreover, when we cross an edge of σ0, an optimal matching M1 that replaces
M0 is obtained from a collection of pairwise-disjoint alternating paths (and
possibly also cycles), where in each path we replace the edges of M0 in the
path by the (same number of) edges of M1. As seen in the proof of Lemma 2,
if γ is a cycle, then dγ = 0 and therefore whether it increases, preserves or
decreases the cost of a matching is independent of the translation t. Thus, we
can assume that the symmetric difference of M0 and M1 consists only of paths
by flipping in M1 the cycles in the difference (obtaining a matching with the
same cost as M1 everywhere). The subset A1 of the m matched points of A in
M1 is obtained by replacing, for each of these paths, the starting point ai of
the path (which belongs to A0) by the terminal point aj (which belongs to A1).
As shown in Lemma 2, this implies that the bisector through which we have
crossed from σ0 to the neighbor region σ1 must be perpendicular to ai − aj ,
for all pairs (ai, aj). Moreover, assuming general position, and specifically that
there are no two distinct pairs of points {ap, ar}, {aq, as} ⊂ A such that ar−ap
and as − aq are parallel, it follows that each edge of DB,A, and specifically of
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∂σ0, corresponds to a single such alternating path, and to a single replacement
pair (ai, aj). In other words, under the above general position assumption, over
each edge of σ0 only one point ai ∈ A0 exits the optimal matching and another
point aj ∈ A \A0 enters in it. (Note however that the edges of the matching
can change globally.) Therefore, we can construct ∂σ0 easily and efficiently in
the following manner. For each of the m points ai ∈ A0, we replace it by one of
the n−m points aj ∈ A \A0. For each such replacement we compute the new
optimal (perfect) matching M1 between B and A1 = (A0 \ {ai})∪{aj} (recall
that, by Lemma 1, once A1 is fixed, the matching M1 is independent of the
translation, so it can be computed at any translation, e.g., at t0). We then find
the bisector, by comparing the expression in the right-hand side of (1) for the
new matching M1 and for the optimal matching M0 in σ0. This provides us
with a total of O(nm) potential bisectors. We now obtain σ0 as the intersection
of the O(nm) halfplanes, bounded by these bisectors and containing t0. This
takes O(nm log (nm)) additional time, which is dominated by the time used
for the computation of the optimal matchings in σ0 and across its potential
edges. Note that for each edge on ∂σ0 we also know an optimal assignment on
its other side.

If the points are not in general position, it is not obvious that the edges of
σ0 can be constructed using the same procedure. The difference here is that
the set matched in a neighboring region might differ in more than one point
from A0. This happens only if more than one (vertex independent) paths in
the symmetric difference of the corresponding matchings vanish on the same
line µ. Nevertheless, we are fine in such a case, because each of the above paths
could be flipped independently, inducing a valid matching, with the same cost
as σ0 on µ, whose matched set differs from A0 by only one element. More
precisely, we have that if A1 ⊆ A is the set matched by an optimal matching
M1 in a region σ1 sharing an edge e with σ0, then there is at least one pair of
points aj ∈ A1\A0 and ai ∈ A0\A1 such that the bisector between σ0 and the
best matching τ using (A0 \ ai) ∪ aj supports e. Since the bisector of σ0 with
τ is one of the potential bisectors we construct, each edge of σ0 is discovered
by the procedure and, hence, the computed boundary of σ0 is correct.

4.4 Computing the optimal matching beyond an edge

As argued above, if the point sets are in general position, we can easily com-
pute an optimal matching for a neighboring region by flipping, in the current
optimal matching, the alternating path inducing the common edge. However,
in degenerate situations, we cannot directly infer any optimal matching on the
other side if several paths induce the same edge. To compute the new match-
ing, we can apply the Hungarian algorithm to a translation infinitesimally
beyond the edge. That is, we take the midpoint ē of the edge e and its outer
normal vector s with respect to σ0, and compute an optimal matching for a
translation ē+εs for ε > 0 arbitrarily small. In order to do it, we compute the
sums and perform the comparisons required by the algorithm regarding the
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squared distances ‖b+ ē+ εs−a‖2, for every a ∈ A and b ∈ B, as polynomials
of degree two in ε, evaluated in the limit ε↘ 0.

Fortunately, the overhead incurred by these additional computations is
dominated by the running time of our procedures for points in general position,
as the following analysis shows.

4.5 Solving Π1(`)

Let ` be a given line in R2; without loss of generality assume ` to be vertical.
We start at some arbitrary point t0 ∈ `, run Π0(t0), and obtain an optimal
injective assignment π0 for the partial matching between B+t0 and A. We now
proceed from t0 upwards along `, and seek the intersection of this ray with the
boundary of the region σ0 of DB,A that contains t0. Finding this intersection
will also identify the next region of the subdivision that ` crosses into (as
noted above, this identification is cheap in general position, but requires some
work in degenerate cases), and we will continue in this manner, finding all the
regions of DB,A that the upper ray of ` crosses. In a fully symmetric manner,
we find the regions crossed by the lower ray from t0, altogether O(nm) regions,
by Theorem 1.

To find the intersection t∗ of the upper ray of ` with ∂σ0, we apply a
simplified variant of the procedure for computing ∂σ0. That is, we construct
the O(nm) potential bisectors between σ0 and the neighboring regions, exactly
as before. (Note that, as argued above for constructing ∂σ0, these bisectors
determine the boundary of the region even in degenerate cases.) The point t∗ is
then the lowest point of intersection of ` with all these bisectors lying above t0.
We repeat this process for each new region that we encounter, and do the
same in the opposite direction, along the lower ray from t0, until we find all
the regions of DB,A crossed by `.

The number of regions is O(nm). We compute the explicit expression for
F (t) in each of them, and thereby find the global minimum t̄ of F along `.
Finally, we compute ∂F

∂x (t̄) (which is a linear expression in t, readily obtained
from the explicit quadratic expression for F in the neighborhood of t̄). We note
that t̄ cannot be a breakpoint of F (that is, lie on an edge of DB,A), since a
local minimum in t̄ implies that F (t) in both neighboring regions is decreasing
towards t̄, but no bisecting edge can pass through such a point. If ∂F

∂x (t̄) is
negative (resp., positive), we conclude that F attains lower values than its
minimum on ` to the right (resp., left) of `, and we report this direction. If the
derivative is 0, we have found a local minimum of F and we stop the whole
algorithm.

The cost of Π1(`) is O(nm · nm ·m3) = O(n2m5), as we encounter O(nm)
regions along `, and for each of them we examine O(nm) potential bisectors,
each of which is obtained by running Π0, in O(m3) time. The additional time
to construct an optimal matching in each region if the points are not in general
position is O(nm2) per region, for a total of O(nm2 · nm) = O(n2m3), and it
is thus dominated by the previous bound.
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4.6 Running time of the algorithm

The running time of the whole algorithm is dominated by the cost of con-
structing the O(nm) regions that the final slab I∗ crosses. Each region is
constructed in O(nm4) time, after which we run a Π1-guided binary search
through its vertices, in time O(n2m5 log (nm)). Multiplying by the number of
regions, we get a total running time of O(n3m6 log (nm)) = O(n3m6 log n).

If the point sets are not in general position, we might need to recompute
an optimal matching from scratch when we enter a new region in the final
slab. This amounts to O(nm) computations requiring O(nm2) time each and,
thus, it does not increase the total running time of the algorithm.

In summary, we have the following main result of this section.

Theorem 4 Given two finite point sets A,B in R2, with n = |A| > |B| = m,
a local minimum of the partial-matching RMS distance under translation can
be computed in O(n3m6 log n) time.

Remark. Returning to the discussion in the introduction concerning heuristics
for finding the global minimum, we can apply similar heuristics to our algo-
rithm. For example, having an initial translation t0 that we expect (or hope)
to be close to the global minimum, we can enclose t0 by an initial, sufficiently
narrow, slab I0, and run the preceding algorithm starting with I0 (after ver-
ifying that it contains a local minimum), as described above. However, if we
want to ensure that the global minimum is obtained, we apply the modified
approach in the following subsection.

4.7 Finding a global minimum

Using the techniques from the previous subsection, we can easily devise an
algorithm for constructing the entire subdivision DB,A, by starting at an arbi-
trary translation, constructing the region that contains it, and continue con-
structing the neighboring regions. Computing an optimal matching in a region
σ (if it needs to be computed from scratch) takes O(nm2) time and computing
the boundary of σ takes O(nm4) time, as explained above. In other words, the
overall time for constructing DB,A, including an optimal assignment over each
of its features, is O(nm4) times its complexity, namely O(n3m7.5(e lnm+e)m).

Once DB,A is constructed, a minimum of F in each region can be computed
in time proportional to its complexity, since the minimum might be attained
at a vertex of the region or at the orthogonal projection of the minimum of
the corresponding parabola on an edge of the region. Therefore, the global
minimum of F can be obtained, by traversing all features of DB,A, in time
proportional to its complexity.

Overall, we obtain the following result.

Theorem 5 Given two finite point sets A,B in R2, with n = |A| > |B| = m,
the subdivision DB,A can be constructed in O(n3m7.5(e lnm+ e)m) time. The
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global minimum of the partial-matching RMS distance under translation can
then be computed in additional O(n3m7.5(e lnm+ e)m) time.

In particular, when m is a constant the global minimum (and the entire DB,A)
can be computed in O(n3) time.

5 The Hausdorff RMS distance under translation

In this section, we turn to the simpler problem involving the Hausdorff RMS
distance, and present efficient algorithms for computing a local minimum of
the RMS function in one and two dimensions. We begin with the simpler
one-dimensional case.

5.1 The one-dimensional case.

The function NA. Let A = {a1, . . . , an} ⊂ R, and recall that, for a point
t ∈ R, NA(t) denotes a nearest neighbor of t in A. Then NA is a step function
with the following structure. Assume that the elements of A are sorted as
a1 < a2 < · · · < an, and put µi = ai+ai+1

2 , for i = 1, . . . , n− 1. Then, breaking
ties in favor of the larger point, we have:

NA(t) =

a1 for t < µ1

ai for i = 2, . . . , n− 1 and µi−1 ≤ t < µi
an for t ≥ µn−1.

See Figure 6 for an illustration. We put NA,i(t) := NA(bi + t), the nearest
neighbor in A of bi + t, for bi ∈ B, and t ∈ R, for i = 1, . . . ,m. The graph of
each of these m functions is just a copy of the graph of NA, x-translated to
the left by the respective bi.

a1 a2 a3 a4

NA

a2

a3

a4

µ1 µ2 µ3

a1

Fig. 6 The step function NA for a set of points on the line.
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The one-dimensional unidirectional case. Denote H(B+t, A) as r(t) for short,
regarding A and B as fixed. We thus want to compute a (local) minimum of
the function

r(t) =

m∑
i=1

(bi + t−NA,i(t))2.

We observe that r(t) is continuous and piecewise differentiable (except at the
points of discontinuity of the step functions NA,i(t)) and each of its pieces is a
parabolic arc. For any t, which is not one of these singular points, also referred
to as breakpoints, the derivative of each of the step functions is 0. Hence we
have, for any non-singular local minimum t of r,

r′(t) = 2

m∑
i=1

(bi + t−NA,i(t)) = 0. (3)

Clearly, for any given (non-singular) translation t0, r(t0) and r′(t0) can be
computed (from scratch) in O(m log n) time, provided that the breakpoints of
NA are given in a sorted order. This will be the case where A is given to us in
sorted order; otherwise, another O(n log n) time for sorting A is required. This
also holds for the left and right one-sided derivatives of r(t0), at a breakpoint
t0, denoted respectively as r′(t0)− and r′(t0)+.

We note that a local minimum of r(t) cannot occur at a singular point.
Indeed, for the local minimum to occur at a breakpoint tstep, we must have
r′(tstep)− ≤ 0 and r′(tstep)+ ≥ 0. However, referring to equation (3), one
easily verifies that the value of r′(t) can only decrease at tstep, contradicting
the above inequalities.

Another simple observation is that if there is an interval I = [t1, t2], such
that r′(t1)+ < 0 and r′(t2)− > 0, then there exists a local minimum of r(t)
inside I. Our algorithm starts with a large interval with this property, and
shrinks it repeatedly, while ensuring that it still contains a local minimum.
At every step of the shrinking process, the number of breakpoints of r(t)
over I reduces by (at least) half, and the process terminates when I does not
contain any breakpoints. At this point it is straightforward to calculate a local
minimum by constructing the explicit representation of r over I.

Assuming after relabeling that b1 < · · · < bm, set t1 = µ1 − bm, and
t2 = µn−1 − b1. We start with I = [t1, t2]. It is easily checked that r(t) has no
breakpoints outside I, and it is in fact decreasing for t < t1 and increasing for
t > t2. Thus I contains the global minimum of r(t).

We next describe the procedure for shrinking I, i.e., computing a subinter-
val I ′ ⊂ I, such that the number of breakpoints of NA,i(t) over I ′ is (approxi-
mately) half the number of its breakpoints over I, for i = 1, . . . ,m, while main-
taining the invariant that r′(t)+ < 0 at the left endpoint of I ′, and r′(t)− > 0
at the right endpoint. Such a “halving” of I is performed in a single iteration
of the procedure, and since we start with O(n) breakpoints for each function
NA,i(t), the algorithm executes O(log n) iterations.

The shrinking process is performed as follows.
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(1) Each iteration starts with an interval I = [t1, t2] such that r′(t1)+ < 0
and r′(t2)− > 0 (where the initial values of t1 and t2 are given above).
We calculate, for each i = 1, . . . ,m, the median step ξi of NA,i among
its steps within I, which can be done in O(log n) time. These m median
steps are thus found in total time O(m log n). We sort them into a list
L = (ξ1, . . . , ξm).

(2) We perform a binary search over L for finding a local minimum of r(t)
between two consecutive elements of L. At each step of the search, with
some value t = ξk, we compute r′(ξk)− and r′(ξk)+ in O(m log n) time; as
noted earlier, there are only three possible cases:
(a) If r′(ξk)− > 0 and r′(ξk)+ > 0, we go to the left, replacing t2 by ξk.
(b) If r′(ξk)− < 0 and r′(ξk)+ < 0, we go to the right, replacing t1 by ξk.
(c) If r′(ξk)− > 0 and r′(ξk)+ < 0, it does not matter where to go—there

are local minima on both sides; we go to the left, say, resetting t2 as
in (a).

In this way, we maintain our invariant. At the end of the binary search,
we get an interval I ′ = [ξj , ξj+1] with r′(ξj)+ < 0 and r′(ξj+1)− > 0. The
progress that we have made by passing from I to I ′ is that, for each step
function NA,i, we got rid of at least half of its steps within I: if ξk ≤ ξj
(resp., ξk ≥ ξj) then the leftmost (resp., rightmost) half of the steps of NA,i
within I is discarded. The running time of this step is O(m log n logm)
(there are O(logm) binary search steps, each taking O(m log n) time).

(3) We keep shrinking I, until it contains no breakpoints (of any NA,i). We
then explicitly construct the graph of r over I, and search for a local min-
imum of r in constant time. By the invariant, at least one such minimum
will be found. The overall running time of step (3) is thus O(m log n).

Hence, the overall running time of the algorithm is O(n+m log2 n logm).

An improved algorithm. Step (2) of the preceding algorithm performs O(logm)
binary-search steps over the list L of the median breakpoints of the step func-
tions within I, in order to eliminate (at least) half of the breakpoints inside
the interval, but we can get rid of a quarter of these breakpoints by replac-
ing the median of L by a weighted median and performing just the first step
of the search. Taking this approach, we keep iterating until the total num-
ber of breakpoints (from all NA,i) within I is O(max{n,m}). Since we start
with O(nm) breakpoints, it is required to perform log min{n,m} iterations.
Omitting the rather standard details, we obtain with this improvement the
following result.

Theorem 6 Let A, B be two finite sets on the real line, with |A| = n and
|B| = m, and assume that the elements of A are sorted as a1 < a2 < · · · < an.
Then a local minimum of the unidirectional RMS distance under translation
from B to A can be obtained in time

O
(
min

{
n+m log2 n logm, n log n+m log n log min {n,m}

})
.
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When |A| = |B| = n, the running time is simply O(n log2 n). When B
is much smaller than A, namely, when |A| = n and |B| = O(n/ log2 n), the
running time is O(n).

The one-dimensional bidirectional case. Simple extensions of the procedure
given above apply to the two variants of the minimum bidirectional Hausdorff
RMS distance, as defined in the introduction. One feature to observe is that,
for the L∞-bidirectional case, a local minimum can also arise at an intersection
between two one-direction functions H(A,B + t) and H(B + t, A). Neverthe-
less, it is easy to handle this new kind of breakpoints, and their number is
proportional to the number of the other, standard breakpoints. Omitting the
further fairly routine details of these extensions, we obtain:

Theorem 7 Given two finite point sets A, B on the real line, with |A| = n
and |B| = m, a local minimum under translation of the L1-bidirectional or
L∞-bidirectional RMS distance between A and B, can be computed in time
O((n logm+m log n) log min {n,m}).

5.2 Minimum Hausdorff RMS distance under translation in two
dimensions

Again, we focus on the unidirectional case, but the analysis and results extend
in a straightforward manner to the bidirectional variants. Recall that, for two
sets A = {a1, . . . , an} and B = {b1, . . . , bm} in R2, the minimum unidirectional
Hausdorff RMS distance under translation from B to A is

HT (B,A) = min
t∈R2

H(B + t, A) = min
t∈R2

m∑
i=1

‖bi + t−NA,i(t)‖2 .

As before, we put r(t) = H(B + t, A), for t ∈ R2, and we seek a transla-
tion t∗ ∈ R2 that brings r to a local minimum. Here, one can also compute
a local minimum by applying the two-dimensional version of the ICP algo-
rithm, but in the worst case it might perform O(n2m2) iterations, each taking
O(m log n) time [13]. Moreover, one can calculate the global minimum of r(t)
in O(n2m2 log (nm)) time, as follows.

Let V(A) denote the Voronoi diagram of A, and let M denote the overlay
subdivision of the m shifted Voronoi diagrams, V(A − bi), for bi ∈ B, which
are just copies of V(A), shifted by the corresponding bi ∈ B. M has O(n2m2)
regions, and this bound is tight in the worst case [13]. M can be constructed
in O(n2m2 log (nm)) time, using, e.g., a standard line-sweep technique.

Within each region τ of M , the nearest-neighbor assignments NA,i(t), for
i = 1, . . . ,m, are fixed for all t ∈ τ . Hence, the graph of r(t) over τ is a portion
of a single paraboloid of the form r(t) = m‖t‖2 + 〈dτ , t〉 + cτ , for a suitable
vector dτ and scalar cτ . This allows us (when cτ and dτ are available) to find a
local minimum of r(t) within the interior of τ (if one exists) in constant time.
One also needs to test for a local minimum over each edge and vertex of M , and



28 Rinat Ben-Avraham et al.

this too can be done in constant time for each such feature, provided that the
explicit expression for r(t) over that feature is known. This expression can be
updated in constant time as we move from one feature of M to a neighboring
feature. All this leads to the promised computation of the global minimum of
r(t) in O(n2m2 log (nm)) time, and our goal is to find a local minimum much
faster.

The high-level algorithm for finding a local minimum. We now present an
improved algorithm that runs in time O(nm log2 (nm)). Similar to the one-
dimensional case (and to the case of partial matching), we search for a local
minimum of r(t) within a vertical slab I, that we keep shrinking until it con-
tains no vertex of M in its interior. This final slab crosses M in a sequence
of only O(nm) regions, stacked above one another and separated by (portions
of) edges of M . It is then routine to scan these regions, construct the explicit
expression for r(t) over each region, updating these expressions in constant
time as we go from one region to an adjacent one, and searching for the global
minimum within I, all in O(nm) time.

A main component in our approach is a procedure that decides whether r(t)
has a local minimum to the left or to the right of a vertical line λ. In analogy
to the procedure in Section 4, we call this procedure Γ1(λ). This decision
can be made in O(nm log(nm)) time, as follows. We first calculate the global
minimum of r(t) restricted to λ, by intersecting λ with the O(nm) edges of the
shifted Voronoi diagrams V(A−bi), by sorting these intersections along λ, and
by constructing the explicit expressions for r(t) over each interval between two
consecutive intersections, updating these expressions in O(1) time as we cross
from one interval to an adjacent one. Having found the global minimum t̄ along
λ, we then inspect the sign of ∂r∂x at t̄, and go in the direction where r is locally
smaller than r(t̄). (If the derivative is 0, we have found a local minimum at
t̄ and we terminate the entire algorithm.) All this takes O(nm log(nm)) time.
As mentioned in Section 4, we should use a global minimum of r(t) restricted
to λ, for guaranteeing that a local minimum indeed lies on the side of λ that
we continue with.

We use the decision procedure Γ1 for shrinking the slab I, while ensuring
that it continues to contain a local minimum. The shrinking is done in two
stages. The first stage narrows I until it has no original vertices of the shifted
Voronoi diagrams inside it. The second stage narrows the slab further to a slab
that has no vertices of M (i.e., intersection points of Voronoi edges of different
diagrams) in it.

Pruning the original Voronoi vertices. The overlay M contains s = O(nm)
original Voronoi vertices. We sort these vertices into a list L = (v1, . . . , vs), by
their x-coordinates.

Let λi be the y-parallel line through vi, for i = 1, . . . , s. The slab that we
start with is I = [λ1, λs]. We run Γ1(λ1) and Γ1(λs), computing the global
minima on λ1 and on λs, and inspecting the signs of ∂r∂x at these minima. If the
output points to a local minimum outside I, then one of the semi-x-unbounded
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side slabs to the left or to the right of I contains a local minimum and has
no original Voronoi vertex in its interior, and we stop the first stage with that
slab. Otherwise, we perform a binary search over L, where at each step of the
search, at some vertex vi, we run the decision procedure Γ1(λi) and determine
which of the two sub-slabs that are split from the current slab by λi contains a
local minimum, using the rule stated above. This stage takes O(nm log2(nm))
time.

Pruning the remaining vertices. Let I denote the final slab of the previous
stage. Since I does not contain any original Voronoi vertices, every edge of any
Voronoi diagram that meets I crosses it from side to side, so its intersection
with I coincides with the intersection of the line supporting the edge. Let S
denote the set of these lines.

The number of intersections between the lines of S within I can still be
large (but at most O(n2m2)). We run a binary search over these intersec-
tions, to shrink I further to a slab between two consecutive intersections (that
contains a local minimum). To guide the binary search, we use the classical
slope-selection procedure [10] that can compute, for a given slab I and a given
parameter k, the k-th leftmost intersection point of the lines in S within I, in
O(nm log(nm)) time. With this procedure at hand, the binary search performs
O(log (nm)) steps, each taking O(nm log (nm)) time, both for finding the rel-
evant intersection point, and for running Γ1 at the corresponding vertical line.
Thus, this stage takes (also) O(nm log2 (nm)) time.

Computing a local minimum in the final slab. Once there are no vertices of
M within I, I is crossed by at most O(nm) edges of M , each crossing I
from its left line to its right line. Consequently, these edges partition I into
O(nm) trapezoidal or triangular slices, each being a portion of a single region
of M , and is bounded by the left and right bounding lines of I, and by two
consecutive edges of M (in their y-order).

We compute r(t) in, say, the top slice, and its minimum in that slice. Then
we traverse the slices from top to bottom, and update r(t) for every slice that
we encounter in constant time. In each slice, we check whether r(t) has a local
minimum inside the slice. Since, by construction, the slab must contain a local
minimum, we will find it.

The running time of this final computation is comprised of computing r(t)
once, in O(m log n) time, and afterwards updating it, in constant time, O(nm)
times, and computing its minimum in I. Therefore, this stage takes a total of
O(nm) time.

Thus, with all these components, we get the main result of this section:

Theorem 8 Given two finite point sets A, B in R2, with |A| = n and |B| =
m, a local minimum of the unidirectional Hausdorff RMS distance from B to
A under translation can be computed in time O(nm log2(nm)).

The bidirectional variants can be handled in much the same way, and,
omitting the details, we get:
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Theorem 9 Given two finite point sets A,B in R2, with |A| = n and |B| = m,
a local minimum of the L1-bidirectional or the L∞-bidirectional Hausdorff
RMS distance between A and B under translation can be computed in time
O(nm log2(nm)).
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