87 research outputs found

    Elevated c-Src is linked to altered cell–matrix adhesion rather than proliferation in KM12C human colorectal cancer cells

    Get PDF
    Elevated expression and/or activity of c-Src, the prototype of the Src family of protein tyrosine kinases, is associated with the development of human colon cancer. However, despite the known pleiotropic effects of these kinases in promoting (a) cell growth downstream of growth factor receptors, and (b) the dynamic regulation of integrin adhesions in fibroblast model systems, their precise role in epithelial cancer cells is unknown. Here we addressed whether elevated expression and activity of cellular Src alters cell proliferation and/or cell–matrix adhesion in cancer cells from the Fidler model of colorectal metastasis. Although elevated Src correlates with ability to metastasise to the liver after intrasplenic injection, we found that this was not linked to enhanced growth, either in vitro or in vivo as sub-cutaneous tumours. However, elevated Src was associated with enhanced attachment to extracellular matrix. In addition, adhesion to fibronectin, was suppressed by agents that inhibited Src activity, while enforced elevation of Src in non-metastatic cells was sufficient to stimulate adhesion to fibronectin and enhanced assembly of adhesion complexes, without influencing cell growth. Thus, we conclude that one role of elevated Src in human colon cancer cells is to modulate integrin-dependent cell–matrix attachment and formation of adhesion structures, which may, in turn, influence cell motility and integrin-dependent cellular responses

    SNAI1 expression and the mesenchymal phenotype: an immunohistochemical study performed on 46 cases of oral squamous cell carcinoma

    Get PDF
    Abstract Background SNAI1 can initiate epithelial-mesenchymal transition (EMT), leading to loss of epithelial characteristics and, in cancer, to invasion and metastasis. We hypothesized that SNAI1 reactivation occurs in oral squamous cell carcinoma (OSCC) where it might also be associated with focal adhesion kinase (FAK) expression and p63 loss. Methods Immunohistochemistry was performed on 46 tumors and 26 corresponding lymph node metastases. Full tissue sections were examined to account for rare and focal expression. Clinical outcome data were collected and analyzed. Results SNAI1-positivity (nuclear, ≥ 5% tumor cells) was observed in 10 tumors and 5 metastases (n = 12 patients). Individual SNAI1(+) tumor cells were seen in primary tumors of 30 patients. High level SNAI1 expression (>10% tumor cells) was rare, but significantly associated with poor outcome. Two cases displayed a sarcomatoid component as part of the primary tumor with SNAI1(+)/FAK(+)/E-cadherin(-)/p63(-) phenotype, but disparate phenotypes in corresponding metastases. All cases had variable SNAI1(+) stroma. A mesenchymal-like immunoprofile in primary tumors characterized by E-cadherin loss (n = 29, 63%) or high cytoplasmic FAK expression (n = 10, 22%) was associated with N(+) status and tumor recurrence/new primary, respectively. Conclusions SNAI1 is expressed, although at low levels, in a substantial proportion of OSCC. High levels of SNAI1 may herald a poor prognosis and circumscribed SNAI1 expression can indicate the presence of a sarcomatoid component. Absence of p63 in this context does not exclude squamous tumor origin. Additional EMT inducers may contribute to a mesenchymal-like phenotype and OSCC progression

    Genetic and epigenetic analyses of MBD3 in colon and lung cancer

    Get PDF
    MBD3: is a member of the methyl-CpG-binding domain family and is located on chromosome 19p13.3, a region of loss of heterozygosity in colon and lung cancers. We therefore screened samples for abnormalities in MBD3. Our results indicate that MBD3 is not a major target of genetic and epigenetic alteration in these cancers.Publisher PDFPeer reviewe

    Mutations in the LKB1 tumour suppressor are frequently detected in tumours from Caucasian but not Asian lung cancer patients

    Get PDF
    Somatic mutations of LKB1 tumour suppressor gene have been detected in human cancers including non-small cell lung cancer (NSCLC). The relationship between LKB1 mutations and clinicopathological characteristics and other common oncogene mutations in NSCLC is inadequately described. In this study we evaluated tumour specimens from 310 patients with NSCLC including those with adenocarcinoma, adenosquamous carcinoma, and squamous cell carcinoma histologies. Tumours were obtained from patients of US (n=143) and Korean (n=167) origin and screened for LKB1, KRAS, BRAF, and EGFR mutations using RT—PCR-based SURVEYOR-WAVE method followed by Sanger sequencing. We detected mutations in the LKB1 gene in 34 tumours (11%). LKB1 mutation frequency was higher in NSCLC tumours of US origin (17%) compared with 5% in NSCLCs of Korean origin (P=0.001). They tended to occur more commonly in adenocarcinomas (13%) than in squamous cell carcinomas (5%) (P=0.066). LKB1 mutations associated with smoking history (P=0.007) and KRAS mutations (P=0.042) were almost mutually exclusive with EGFR mutations (P=0.002). The outcome of stages I and II NSCLC patients treated with surgery alone did not significantly differ based on LKB1 mutation status. Our study provides clinical and molecular characteristics of NSCLC, which harbour LKB1 mutations

    Germline CDH1 deletions in hereditary diffuse gastric cancer families

    Get PDF
    Germline CDH1 point or small frameshift mutations can be identified in 30–50% of hereditary diffuse gastric cancer (HDGC) families. We hypothesized that CDH1 genomic rearrangements would be found in HDGC and identified 160 families with either two gastric cancers in first-degree relatives and with at least one diffuse gastric cancer (DGC) diagnosed before age 50, or three or more DGC in close relatives diagnosed at any age. Sixty-seven carried germline CDH1 point or small frameshift mutations. We screened germline DNA from the 93 mutation negative probands for large genomic rearrangements by Multiplex Ligation-Dependent Probe Amplification. Potential deletions were validated by RT–PCR and breakpoints cloned using a combination of oligo-CGH-arrays and long-range-PCR. In-silico analysis of the CDH1 locus was used to determine a potential mechanism for these rearrangements. Six of 93 (6.5%) previously described mutation negative HDGC probands, from low GC incidence populations (UK and North America), carried genomic deletions (UK and North America). Two families carried an identical deletion spanning 193 593 bp, encompassing the full CDH3 sequence and CDH1 exons 1 and 2. Other deletions affecting exons 1, 2, 15 and/or 16 were identified. The statistically significant over-representation of Alus around breakpoints indicates it as a likely mechanism for these deletions. When all mutations and deletions are considered, the overall frequency of CDH1 alterations in HDGC is ∼46% (73/160). CDH1 large deletions occur in 4% of HDGC families by mechanisms involving mainly non-allelic homologous recombination in Alu repeat sequences. As the finding of pathogenic CDH1 mutations is useful for management of HDGC families, screening for deletions should be offered to at-risk families

    Synthetic Heparan Sulfate Oligosaccharides Inhibit Endothelial Cell Functions Essential for Angiogenesis

    Get PDF
    Heparan sulfate (HS) is an important regulator of the assembly and activity of various angiogenic signalling complexes. However, the significance of precisely defined HS structures in regulating cytokine-dependent angiogenic cellular functions and signalling through receptors regulating angiogenic responses remains unclear. Understanding such structure-activity relationships is important for the rational design of HS fragments that inhibit HS-dependent angiogenic signalling complexes.We synthesized a series of HS oligosaccharides ranging from 7 to 12 saccharide residues that contained a repeating disaccharide unit consisting of iduronate 2-O-sulfate linked to glucosamine with or without N-sulfate. The ability of oligosaccharides to compete with HS for FGF2 and VEGF165 binding significantly increased with oligosaccharide length and sulfation. Correspondingly, the inhibitory potential of oligosaccharides against FGF2- and VEGF165-induced endothelial cell responses was greater in longer oligosaccharide species that were comprised of disaccharides bearing both 2-O- and N-sulfation (2SNS). FGF2- and VEGF165-induced endothelial cell migration were inhibited by longer 2SNS oligosaccharide species with 2SNS dodecasaccharide activity being comparable to that of receptor tyrosine kinase inhibitors targeting FGFR or VEGFR-2. Moreover, the 2SNS dodecasaccharide ablated FGF2- or VEGF165-induced phosphorylation of FAK and assembly of F-actin in peripheral lamellipodia-like structures. In contrast, FGF2-induced endothelial cell proliferation was only moderately inhibited by longer 2SNS oligosaccharides. Inhibition of FGF2- and VEGF165-dependent endothelial tube formation strongly correlated with oligosaccharide length and sulfation with 10-mer and 12-mer 2SNS oligosaccharides being the most potent species. FGF2- and VEGF165-induced activation of MAPK pathway was inhibited by biologically active oligosaccharides correlating with the specific phosphorylation events in FRS2 and VEGFR-2, respectively.These results demonstrate structure-function relationships for synthetic HS saccharides that suppress endothelial cell migration, tube formation and signalling induced by key angiogenic cytokines

    Frequency of CDH1 germline mutations in gastric carcinoma coming from high- and low-risk areas: metanalysis and systematic review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The frequency of E-cadherin germline mutations in countries with different incidence rates for gastric carcinoma has not been well established. The goal of this study was to assess the worldwide frequency of <it>CDH1 </it>germline mutations in gastric cancers coming from low- and high-risk areas.</p> <p>Methods</p> <p>English articles using MEDLINE access (from 1998 to 2011). Search terms included <it>CDH1</it>, E-cadherin, germline mutation, gastric cancer, hereditary, familial and diffuse histotype.</p> <p>The study included all E-cadherin germline mutations identified in gastric cancer patients; somatic mutations and germline mutations reported in other tumors were excluded.</p> <p>The method of this study was scheduled in accordance with the "PRISMA statement for reporting systematic reviews and meta-analyses". Countries were classified as low- or middle/high risk-areas for gastric carcinoma incidence. Statistical analysis was performed to correlate the <it>CDH1 </it>mutation frequency with gastric cancer incidence areas.</p> <p>Results</p> <p>A total of 122 E-cadherin germline mutations have been identified; the majority (87.5%) occurred in gastric cancers coming from low-risk areas. In high-risk areas, we identified 16 mutations in which missense mutations were predominant. (68.8%). We verified a significant association between the mutation frequency and the gastric cancer risk area (<it>p </it>< 0.001: overall identified mutations in low- vs. middle/high-risk areas).</p> <p>Conclusions</p> <p>E-cadherin genetic screenings performed in low-risk areas for gastric cancer identified a higher frequency of <it>CDH1 </it>germline mutations. This data could open new approaches in the gastric cancer prevention test; before proposing a proband candidate for the <it>CDH1 </it>genetic screening, geographic variability, alongside the family history should be considered.</p

    Somatic LKB1 Mutations Promote Cervical Cancer Progression

    Get PDF
    Human Papilloma Virus (HPV) is the etiologic agent for cervical cancer. Yet, infection with HPV is not sufficient to cause cervical cancer, because most infected women develop transient epithelial dysplasias that spontaneously regress. Progression to invasive cancer has been attributed to diverse host factors such as immune or hormonal status, as no recurrent genetic alterations have been identified in cervical cancers. Thus, the pressing question as to the biological basis of cervical cancer progression has remained unresolved, hampering the development of novel therapies and prognostic tests. Here we show that at least 20% of cervical cancers harbor somatically-acquired mutations in the LKB1 tumor suppressor. Approximately one-half of tumors with mutations harbored single nucleotide substitutions or microdeletions identifiable by exon sequencing, while the other half harbored larger monoallelic or biallelic deletions detectable by multiplex ligation probe amplification (MLPA). Biallelic mutations were identified in most cervical cancer cell lines; HeLa, the first human cell line, harbors a homozygous 25 kb deletion that occurred in vivo. LKB1 inactivation in primary tumors was associated with accelerated disease progression. Median survival was only 13 months for patients with LKB1-deficient tumors, but >100 months for patients with LKB1-wild type tumors (P = 0.015, log rank test; hazard ratio = 0.25, 95% CI = 0.083 to 0.77). LKB1 is thus a major cervical tumor suppressor, demonstrating that acquired genetic alterations drive progression of HPV-induced dysplasias to invasive, lethal cancers. Furthermore, LKB1 status can be exploited clinically to predict disease recurrence

    Role of LKB1 in lung cancer development

    Get PDF
    Three phenotypically related genetic syndromes and their lesions (LKB1, PTEN, and TSC1/2) are identified as frequently altered in lung cancer. LKB1, a kinase inactivated in 30% of lung cancers, is discussed in this review. Loss of LKB1 regulation often coincident with KRAS activation allows for unchecked growth and the metabolic capacity to accommodate the proliferation
    corecore