8 research outputs found

    DataSheet1_Metabolomic profiling of triple negative breast cancer cells suggests that valproic acid can enhance the anticancer effect of cisplatin.docx

    No full text
    Cisplatin is an effective chemotherapeutic agent for treating triple negative breast cancer (TNBC). Nevertheless, cisplatin-resistance might develop during the course of treatment, allegedly by metabolic reprograming, which might influence epigenetic regulation. We hypothesized that the histone deacetylase inhibitor (HDACi) valproic acid (VPA) can counter the cisplatin-induced metabolic changes leading to its resistance. We performed targeted metabolomic and real time PCR analyses on MDA-MB-231 TNBC cells treated with cisplatin, VPA or their combination. 22 (88%) out of the 25 metabolites most significantly modified by the treatments, were acylcarnitines (AC) and three (12%) were phosphatidylcholines (PCs). The most discernible effects were up-modulation of AC by cisplatin and, contrarily, their down-modulation by VPA, which was partial in the VPA-cisplatin combination. Furthermore, the VPA-cisplatin combination increased PCs, sphingomyelins (SM) and hexose levels, as compared to the other treatments. These changes predicted modulation of different metabolic pathways, notably fatty acid degradation, by VPA. Lastly, we also show that the VPA-cisplatin combination increased mRNA levels of the fatty acid oxidation (FAO) promoting enzymes acyl-CoA synthetase long chain family member 1 (ACSL1) and decreased mRNA levels of fatty acid synthase (FASN), which is the rate limiting enzyme of long-chain fatty acid synthesis. In conclusion, VPA supplementation altered lipid metabolism, especially fatty acid oxidation and lipid synthesis, in cisplatin-treated MDA-MB-231 TNBC cells. This metabolic reprogramming might reduce cisplatin resistance. This finding may lead to the discovery of new therapeutic targets, which might reduce side effects and counter drug tolerance in TNBC patients.</p

    Safety and efficacy of human embryonic stem cell-derived astrocytes following intrathecal transplantation in SOD1G93A and NSG animal models

    No full text
    Abstract Background Amyotrophic lateral sclerosis (ALS) is a motor neuron (MN) disease characterized by the loss of MNs in the central nervous system. As MNs die, patients progressively lose their ability to control voluntary movements, become paralyzed and eventually die from respiratory/deglutition failure. Despite the selective MN death in ALS, there is growing evidence that malfunctional astrocytes play a crucial role in disease progression. Thus, transplantation of healthy astrocytes may compensate for the diseased astrocytes. Methods We developed a good manufacturing practice-grade protocol for generation of astrocytes from human embryonic stem cells (hESCs). The first stage of our protocol is derivation of astrocyte progenitor cells (APCs) from hESCs. These APCs can be expanded in large quantities and stored frozen as cell banks. Further differentiation of the APCs yields an enriched population of astrocytes with more than 90% GFAP expression (hES-AS). hES-AS were injected intrathecally into hSOD1G93A transgenic mice and rats to evaluate their therapeutic potential. The safety and biodistribution of hES-AS were evaluated in a 9-month study conducted in immunodeficient NSG mice under good laboratory practice conditions. Results In vitro, hES-AS possess the activities of functional healthy astrocytes, including glutamate uptake, promotion of axon outgrowth and protection of MNs from oxidative stress. A secretome analysis shows that these hES-AS also secrete several inhibitors of metalloproteases as well as a variety of neuroprotective factors (e.g. TIMP-1, TIMP-2, OPN, MIF and Midkine). Intrathecal injections of the hES-AS into transgenic hSOD1G93A mice and rats significantly delayed disease onset and improved motor performance compared to sham-injected animals. A safety study in immunodeficient mice showed that intrathecal transplantation of hES-AS is safe. Transplanted hES-AS attached to the meninges along the neuroaxis and survived for the entire duration of the study without formation of tumors or teratomas. Cell-injected mice gained similar body weight to the sham-injected group and did not exhibit clinical signs that could be related to the treatment. No differences from the vehicle control were observed in hematological parameters or blood chemistry. Conclusion Our findings demonstrate the safety and potential therapeutic benefits of intrathecal injection of hES-AS for the treatment of ALS

    Additional file 1: of Safety and efficacy of human embryonic stem cell-derived astrocytes following intrathecal transplantation in SOD1G93A and NSG animal models

    No full text
    Figure S1. hES-AS produce and secrete neurotrophic factors. Conditioned media of 24 h from cultures of hES-AS differentiated for 28 days as well as cell extracts used to measure level of neurotrophic factors GDNF, BDNF, VEGF and IGF-1. For each factor, bars show cell content, amount secreted and negative control (medium only), expressed in pg/106 cells (triplicates ¹ SD) (PDF 91 kb

    Additional file 3: of Safety and efficacy of human embryonic stem cell-derived astrocytes following intrathecal transplantation in SOD1G93A and NSG animal models

    No full text
    Figure S2. Effect of hES-AS transplantation on disease onset, progression and survival in hSOD1G93A mice. hES-AS, differentiated for 7 days, transplanted intrathecally through CM of hSOD1G93A mice. A Three experimental groups tested, single injection of 2 × 106 hES-AS on day 67 of life (Cellsx1), two injections of 2 × 106 hES-AS each on days 67 and 97 (Cellsx2) and once sham-injected mice (vehicle). Kaplan–Meir plot of disease onset (measured by 3% body weight loss from maximal weight) showing more delay in twice-injected group. B Kaplan–Meier survival curves with similar trends. C Body weight maintained longer in hES-AS-treated mice. Note that a few days after second injection, day 97, weight loss occurred related to injection. D Neurological score. E Significant improvement in motor performance (Rotarod test) for hSOD1 mice transplanted twice with hES-AS. C, D Values are mean ± SEM (PDF 262 kb

    Gliomas display a microRNA expression profile reminiscent of neural precursor cells

    No full text
    Gliomas express many genes that play a role in neural precursor cells (NPCs), but no direct comparison between glioma and stem cell (SC) gene expression profiles has been performed. To investigate the similarities and differences between gliomas and SCs, we compared the microRNA (miRNA) expression signatures of glial tumors, embryonic SCs (ESCs), NPCs, and normal adult brains from both human and mouse tissues. We demonstrated that both human gliomas (regardless of their grade) and methylcholanthrene-induced mouse glioma shared an miRNA expression profile that is reminiscent of NPCs. About half of the miRNAs expressed in the shared profile clustered in seven genomic regions susceptible to genetic/epigenetic alterations in various cancers. These clusters comprised the miR17 family, mir183-182, and the SC-specific clusters mir367-302 and mir371-373, which are upregulated in gliomas, ESCs, and NPCs. The bipartite cluster of 7 + 46 miRNAs on chromosome 14q32.31, which might represent the largest tumor suppressor miRNA cluster, was downregulated in the shared expression profile. This study provides the first evidence for association between these clusters and gliomas. Despite the broad similarity in the miRNA expression profiles, 15 miRNAs showed disparate expression between SC and gliomas. Ten miRNAs belong to the 2 SC-specific clusters and the remaining (mir135b, mir141, mir205, mir200C, and mir301a) have been previously shown to associate with malignancies. Our finding showed that all gliomas displayed NPC-like miRNA signatures, which may have implications for studies of glioma origins. Furthermore, careful study of the 15 miRNAs that differ in expression between SCs and gliomas, particularly those 5 that are not SC-specific, may enhance our understanding of gliomagenesis
    corecore