1,130 research outputs found

    Complementary vertices and adjacency testing in polytopes

    Full text link
    Our main theoretical result is that, if a simple polytope has a pair of complementary vertices (i.e., two vertices with no facets in common), then it has at least two such pairs, which can be chosen to be disjoint. Using this result, we improve adjacency testing for vertices in both simple and non-simple polytopes: given a polytope in the standard form {x \in R^n | Ax = b and x \geq 0} and a list of its V vertices, we describe an O(n) test to identify whether any two given vertices are adjacent. For simple polytopes this test is perfect; for non-simple polytopes it may be indeterminate, and instead acts as a filter to identify non-adjacent pairs. Our test requires an O(n^2 V + n V^2) precomputation, which is acceptable in settings such as all-pairs adjacency testing. These results improve upon the more general O(nV) combinatorial and O(n^3) algebraic adjacency tests from the literature.Comment: 14 pages, 5 figures. v1: published in COCOON 2012. v2: full journal version, which strengthens and extends the results in Section 2 (see p1 of the paper for details

    The CONEstrip algorithm

    Get PDF
    Uncertainty models such as sets of desirable gambles and (conditional) lower previsions can be represented as convex cones. Checking the consistency of and drawing inferences from such models requires solving feasibility and optimization problems. We consider finitely generated such models. For closed cones, we can use linear programming; for conditional lower prevision-based cones, there is an efficient algorithm using an iteration of linear programs. We present an efficient algorithm for general cones that also uses an iteration of linear programs

    A Perturbative Approach to the Relativistic Harmonic Oscillator

    Get PDF
    A quantum realization of the Relativistic Harmonic Oscillator is realized in terms of the spatial variable xx and {\d\over \d x} (the minimal canonical representation). The eigenstates of the Hamiltonian operator are found (at lower order) by using a perturbation expansion in the constant c1c^{-1}. Unlike the Foldy-Wouthuysen transformed version of the relativistic hydrogen atom, conventional perturbation theory cannot be applied and a perturbation of the scalar product itself is required.Comment: 9 pages, latex, no figure

    Spacetime structure of the global vortex

    Get PDF
    We analyse the spacetime structure of the global vortex and its maximal analytic extension in an arbitrary number of spacetime dimensions. We find that the vortex compactifies space on the scale of the Hubble expansion of its worldvolume, in a manner reminiscent of that of the domain wall. We calculate the effective volume of this compactification and remark on its relevance to hierarchy resolution with extra dimensions. We also consider strongly gravitating vortices and derive bounds on the existence of a global vortex solution.Comment: 19 pages revtex, 2 figures, minor changes, references adde

    On the Relationship between Convex Bodies Related to Correlation Experiments with Dichotomic Observables

    Get PDF
    In this paper we explore further the connections between convex bodies related to quantum correlation experiments with dichotomic variables and related bodies studied in combinatorial optimization, especially cut polyhedra. Such a relationship was established in Avis, Imai, Ito and Sasaki (2005 J. Phys. A: Math. Gen. 38 10971-87) with respect to Bell inequalities. We show that several well known bodies related to cut polyhedra are equivalent to bodies such as those defined by Tsirelson (1993 Hadronic J. S. 8 329-45) to represent hidden deterministic behaviors, quantum behaviors, and no-signalling behaviors. Among other things, our results allow a unique representation of these bodies, give a necessary condition for vertices of the no-signalling polytope, and give a method for bounding the quantum violation of Bell inequalities by means of a body that contains the set of quantum behaviors. Optimization over this latter body may be performed efficiently by semidefinite programming. In the second part of the paper we apply these results to the study of classical correlation functions. We provide a complete list of tight inequalities for the two party case with (m,n) dichotomic observables when m=4,n=4 and when min{m,n}<=3, and give a new general family of correlation inequalities.Comment: 17 pages, 2 figure

    A Global Fit of Non-Relativistic Effective Dark Matter Operators Including Solar Neutrinos

    Full text link
    We perform a global fit of dark matter interactions with nucleons using a non-relativistic effective operator description, considering both direct detection and neutrino data. We examine the impact of combining the direct detection experiments CDMSlite, CRESST-II, CRESST-III, DarkSide-50, LUX, LZ, PandaX-II, PandaX-4T, PICO-60, SIMPLE, SuperCDMS, XENON100, and XENON1T along with neutrino data from IceCube and ANTARES. While current neutrino telescope data lead to increased sensitivity compared to underground nuclear scattering experiments for dark matter masses above 100 GeV, our future projections show that the next generation of underground experiments will significantly outpace solar searches for most dark matter-nucleon elastic scattering interactions.Comment: 12+9 pages, 26 figures, Likelihoods available at https://zenodo.org/records/1003221

    Quantum correlations in the temporal CHSH scenario

    Full text link
    We consider a temporal version of the CHSH scenario using projective measurements on a single quantum system. It is known that quantum correlations in this scenario are fundamentally more general than correlations obtainable with the assumptions of macroscopic realism and non-invasive measurements. In this work, we also educe some fundamental limitations of these quantum correlations. One result is that a set of correlators can appear in the temporal CHSH scenario if and only if it can appear in the usual spatial CHSH scenario. In particular, we derive the validity of the Tsirelson bound and the impossibility of PR-box behavior. The strength of possible signaling also turns out to be surprisingly limited, giving a maximal communication capacity of approximately 0.32 bits. We also find a temporal version of Hardy's nonlocality paradox with a maximal quantum value of 1/4.Comment: corrected versio

    Dark Matter from Monogem

    Full text link
    As a supernova shock expands into space, it may collide with dark matter particles, scattering them up to velocities more than an order of magnitude larger than typical dark matter velocities in the Milky Way. If a supernova remnant is close enough to Earth, and the appropriate age, this flux of high-velocity dark matter could be detectable in direct detection experiments, particularly if the dark matter interacts via a velocity-dependent operator. This could make it easier to detect light dark matter that would otherwise have too little energy to be detected. We show that the Monogem Ring supernova remnant is both close enough and the correct age to produce such a flux, and thus we produce novel direct detection constraints and sensitivities for future experiments.Comment: 8 Pages of Text, 3 Figure

    de Sitter symmetry of Neveu-Schwarz spinors

    Full text link
    We study the relations between Dirac fields living on the 2-dimensional Lorentzian cylinder and the ones living on the double-covering of the 2-dimensional de Sitter manifold, here identified as a certain coset space of the group SL(2,R)SL(2,R). We show that there is an extended notion of de Sitter covariance only for Dirac fields having the Neveu-Schwarz anti-periodicity and construct the relevant cocycle. Finally, we show that the de Sitter symmetry is naturally inherited by the Neveu-Schwarz massless Dirac field on the cylinder.Comment: 24 page

    Bounds on the Complexity of Halfspace Intersections when the Bounded Faces have Small Dimension

    Full text link
    We study the combinatorial complexity of D-dimensional polyhedra defined as the intersection of n halfspaces, with the property that the highest dimension of any bounded face is much smaller than D. We show that, if d is the maximum dimension of a bounded face, then the number of vertices of the polyhedron is O(n^d) and the total number of bounded faces of the polyhedron is O(n^d^2). For inputs in general position the number of bounded faces is O(n^d). For any fixed d, we show how to compute the set of all vertices, how to determine the maximum dimension of a bounded face of the polyhedron, and how to compute the set of bounded faces in polynomial time, by solving a polynomial number of linear programs
    corecore