2,989 research outputs found
Nueva benzoil lactona y otros costituyentes de pilocarpus alvaradoii (rutaceae)
Del extracto etanólico de hojas de Pilocarpus alvaradoii fue aislada e identificada la nueva lactona α-Benzoil-γ-valerolactona (1), junto con los triterpenos pentacíclicos conocidos lupeol (2), epibetulina (3); y las furanocumarinas bergapteno (4), psoraleno (5), y xantotoxina (6). El aislamiento y la purificación fueron realizados por técnicas cromatográficas convencionales. La elucidación estructural de estos compuestos se determinó mediante técnicas espectroscópicas (IR, RMN 1H, 13C, EM)
Growth and Branching of Gold nanoparticles Through MesoporousSilica Thin Films
Composite materials made of mesoporous oxide thin films containing metallic nanoparticles are of high interest in various fields, including catalysis, biosensing and non-linear optics. We demonstrate in this work the fabrication of such composite materials containing a sub-monolayer of gold nanoparticles (GNPs) of various shapes covered with mesoporous silica thin films. Additionally, the shape of the GNPs (and thus their optical properties) can be modified in situ through seeded growth and branching. Such growth proceeds upon wetting with HAuCl 4 solution, a surfactant (cetyltrimethylammonium bromide, CTAB) and a mild reducing agent (ascorbic acid, AA). The effect of varying several reaction parameters (time and CTAB and AA concentrations) was evaluated, showing that more anisotropic particles are obtained at longer reaction times, lower CTAB concentration and higher AA concentration. The final shape of the GNPs was also found to depend on their initial shape and size, as well as the pore size of the mesoporous film covering them. Because the growth proceeds through the pores of the film, it may lead to shapes that are not easily obtained in solution, such as particles with branches on one side only. Finally, we have confirmed that no damage was induced to the mesoporous silica structure during the growth process and thus the final particles remain well covered by the thin film, which can eventually be used as a filter between the GNPs and the outer medium.Fil: Angelomé, Paula C.. Universidad de Vigo; EspañaFil: Pastoriza Santos, Isabel. Universidad de Vigo; EspañaFil: Pérez Juste, Jorge. Universidad de Vigo; EspañaFil: Rodríguez-González, Benito. Universidad de Vigo; EspañaFil: Zelcer, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaFil: Soler Illia, Galo Juan de Avila Arturo. Universidad de Buenos Aires; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Liz Marzán, Luis M.. Universidad de Vigo; Españ
Liver-specific methionine adenosyltransferase MAT1A gene expression is associated with a specific pattern of promoter methylation and histone acetylation: implications for MAT1A silencing during transformation
Methionine adenosyltransferase (MAT) is the enzyme that catalyzes the synthesis of S-adenosylmethionine (AdoMet), the main donor of methyl groups in the cell. In mammals MAT is the product of two genes, MAT1A and MAT2A. MAT1A is expressed only in the mature liver whereas fetal hepatocytes, extrahepatic tissues and liver cancer cells express MAT2A. The mechanisms behind the tissue and differentiation state specific MAT1A expression are not known. In the present work we examined MAT1A promoter methylation status by means of methylation sensitive restriction enzyme analysis. Our data indicate that MAT1A promoter is hypomethylated in liver and hypermethylated in kidney and fetal rat hepatocytes, indicating that this modification is tissue specific and developmentally regulated. Immunoprecipitation of mononucleosomes from liver and kidney tissues with antibodies mainly specific to acetylated histone H4 and subsequent Southern blot analysis with a MAT1A promoter probe demonstrated that MAT1A expression is linked to elevated levels of chromatin acetylation. Early changes in MAT1A methylation are already observed in the precancerous cirrhotic livers from rats, which show reduced MAT1A expression. Human hepatoma cell lines in which MAT1A is not expressed were also hypermethylated at this locus. Finally we demonstrate that MAT1A expression is reactivated in the human hepatoma cell line HepG2 treated with 5-aza-2'-deoxycytidine or the histone deacetylase inhibitor trichostatin, suggesting a role for DNA hypermethylation and histone deacetylation in MAT1A silencing
Evidence of a Non-universal Stellar Initial Mass Function. Insights from HST Optical Imaging of Six Ultra-faint Dwarf Milky Way Satellites
Using deep observations obtained with the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST), we demonstrate that the sub-solar stellar initial mass function (IMF) of six ultra-faint dwarf Milky Way satellites (UFDs) is more bottom light than the IMF of the Milky Way disk. Our data have a lower-mass limit of ~0.45 M_⊙, while the upper limit is ~0.8 M_⊙, set by the turnoff mass of these old, metal-poor systems. If formulated as a single power law, we obtain a shallower IMF slope than the Salpeter value of −2.3, ranging from −1.01 for Leo IV to −1.87 for Boötes I. The significance of these deviations depends on the galaxy and is typically 95% or more. When modeled as a log-normal, the IMF fit results in a higher peak mass than in the Milky Way disk, but a Milky Way disk value for the characteristic system mass (~0.22 M_⊙) is excluded at only 68% significance, and only for some UFDs in the sample. We find that the IMF slope correlates well with the galaxy mean metallicity, and to a lesser degree, with the velocity dispersion and the total mass. The strength of the observed correlations is limited by shot noise in the number of observed stars, but future space-based missions like the James Webb Space Telescope (JWST) and the Wide-Field Infrared Survey Telescope ( WFIRST) will enhance both the number of dwarf Milky Way satellites that can be studied in such detail and the observation depth for individual galaxies
Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepatocellular carcinoma
BACKGROUND/AIMS:
It has been known for at least 50 years that alterations in methionine metabolism occur in human liver cirrhosis. However, the molecular basis of this alteration is not completely understood. In order to gain more insight into the mechanisms behind this condition, mRNA levels of methionine adenosyltransferase (MAT1A), glycine methyltransferase (GNMT), methionine synthase (MS), betaine homocysteine methyltransferase (BHMT) and cystathionine beta-synthase (CBS) were examined in 26 cirrhotic livers, five hepatocellular carcinoma (HCC) tissues and ten control livers.
METHODS:
The expression of the above-mentioned genes was determined by quantitative RT-PCR analysis. Methylation of MAT1A promoter was assessed by methylation-sensitive restriction enzyme digestion of genomic DNA.
RESULTS:
When compared to normal livers MAT1A, GNMT, BHMT, CBS and MS mRNA contents were significantly reduced in liver cirrhosis. Interestingly, MAT1A promoter was hypermethylated in the cirrhotic liver. HCC tissues also showed decreased mRNA levels of these enzymes.
CONCLUSIONS:
These findings establish that the abundance of the mRNA of the main genes involved in methionine metabolism is markedly reduced in human cirrhosis and HCC. Hypermethylation of MAT1A promoter could participate in its reduced expression in cirrhosis. These observations help to explain the hypermethioninemia, hyperhomocysteinemia and reduced hepatic glutathione content observed in cirrhosis
- …