12,477 research outputs found

    Drastic annealing effects in transport properties of single crystals of the YbNi2B2C heavy fermion system

    Full text link
    We report temperature dependent resistivity, specific heat, magnetic susceptibility and thermoelectric power measurements made on the heavy fermion system YbNi2B2C, for both as grown and annealed single crystals. Our results demonstrate a significant variation in the temperature dependent electrical resistivity and thermoelectric power between as grown crystals and crystals that have undergone optimal (150 hour, 950 C) annealing, whereas the thermodynamic properties: (c_p(T) and chi(T)) remain almost unchanged. We interpret these results in terms of redistributions of local Kondo temperatures associated with ligandal disorder for a small (~ 1%) fraction of the Yb sites.Comment: 5 pages, 4 figures, submitted to PR

    Spectral analysis of Swift long GRBs with known redshift

    Full text link
    We study the spectral and energetics properties of 47 long-duration gamma-ray bursts (GRBs) with known redshift, all of them detected by the Swift satellite. Due to the narrow energy range (15-150 keV) of the Swift-BAT detector, the spectral fitting is reliable only for fitting models with 2 or 3 parameters. As high uncertainty and correlation among the errors is expected, a careful analysis of the errors is necessary. We fit both the power law (PL, 2 parameters) and cut--off power law (CPL, 3 parameters) models to the time-integrated spectra of the 47 bursts, and present the corresponding parameters, their uncertainties, and the correlations among the uncertainties. The CPL model is reliable only for 29 bursts for which we estimate the nuf_nu peak energy Epk. For these GRBs, we calculate the energy fluence and the rest- frame isotropic-equivalent radiated energy, Eiso, as well as the propagated uncertainties and correlations among them. We explore the distribution of our homogeneous sample of GRBs on the rest-frame diagram E'pk vs Eiso. We confirm a significant correlation between these two quantities (the "Amati" relation) and we verify that, within the uncertainty limits, no outliers are present. We also fit the spectra to a Band model with the high energy power law index frozen to -2.3, obtaining a rather good agreement with the "Amati" relation of non-Swift GRBs.Comment: 16 pages. To appear in MNRAS. Minor changes were introduced in this last versio

    Direct observation of Fe spin reorientation in single crystalline YbFe6Ge6

    Full text link
    We have grown single crystals of YbFe6Ge6 and LuFe6Ge6 and characterized their anisotropic behaviour through low field magnetic susceptibility, field-dependent magnetization, resistivity and heat capacity measurements. The Yb+3 valency is confirmed by LIII XANES measurements. YbFe6Ge6 crystals exhibit a field-dependent, sudden reorientation of the Fe spins at about 63 K, a unique effect in the RFe6Ge6 family (R = rare earths) where the Fe ions order anti-ferromagnetically with Neel temperatures above 450 K and the R ions' magnetism appears to behave independently. The possible origins of this unusual behaviour of the ordered Fe moments in this compound are discussed.Comment: 12 pages, 8 figures, accepted in J. Phys.: Cond. Matte

    Explaining Aviation Safety Incidents Using Deep Temporal Multiple Instance Learning

    Full text link
    Although aviation accidents are rare, safety incidents occur more frequently and require a careful analysis to detect and mitigate risks in a timely manner. Analyzing safety incidents using operational data and producing event-based explanations is invaluable to airline companies as well as to governing organizations such as the Federal Aviation Administration (FAA) in the United States. However, this task is challenging because of the complexity involved in mining multi-dimensional heterogeneous time series data, the lack of time-step-wise annotation of events in a flight, and the lack of scalable tools to perform analysis over a large number of events. In this work, we propose a precursor mining algorithm that identifies events in the multidimensional time series that are correlated with the safety incident. Precursors are valuable to systems health and safety monitoring and in explaining and forecasting safety incidents. Current methods suffer from poor scalability to high dimensional time series data and are inefficient in capturing temporal behavior. We propose an approach by combining multiple-instance learning (MIL) and deep recurrent neural networks (DRNN) to take advantage of MIL's ability to learn using weakly supervised data and DRNN's ability to model temporal behavior. We describe the algorithm, the data, the intuition behind taking a MIL approach, and a comparative analysis of the proposed algorithm with baseline models. We also discuss the application to a real-world aviation safety problem using data from a commercial airline company and discuss the model's abilities and shortcomings, with some final remarks about possible deployment directions

    Pulsed x-rays dose measurements from a hundred joules plasma focus device

    Get PDF
    Indexación: Scopus.Present work is aimed to perform dosimetric measurements to characterize dosis obtained from pulsed x-rays emitted from a hundred joules plasma focus device PF-400J using thermoluminescent dosimeters (TLD-100). Two dosimeter arrays (containing 21 dosimeters in each) were used. One of the arrays was kept inside the PF-400J vacuum chamber and other outside the vacuum chamber, simultaneously. It was found that dosis obtained from the inside array (∼200.7 mGy) were hundred times larger than the outside array (∼1.1 mGy) for hundred pulses of x-rays. Later, the vacuum window of PF-400J, which was made of 1 mm aluminum, was replaced by a plastic window and a similar dosimeter array was kept outside the chamber over the plastic window. With this arrangement, the obtained doses (100 pulses of x-rays) were of the same order of magnitude (∼106 mGy) as it was inside the vacuum chamber. Later, a lead piece was inserted inside the hollow anode of PF-400J, which increased dose (∼250 mGy) per hundred pulses of x-ray outside the vacuum chamber using plastic vacuum window. Our results suggest that PF-400J could be a useful device to study low dose pulsed radiation effects on cancer cell lines in in vitro experiments. © Published under licence by IOP Publishing Ltd.The work is supported by grant ACT-1115, CONICYT, Chile.https://iopscience.iop.org/article/10.1088/1742-6596/1043/1/01204
    • …
    corecore