6 research outputs found

    Evaluation of the energy consumption and overheating of homes in Miami, Guayaquil and Tenerife

    Get PDF
    Year after year, global warming is elevating temperatures all over the world, causing indoor overheating environments that are inhabitable, and increasing energy demand in housing. Given this global concern, the aim of the study was to evaluate the thermal behavior of the house in the cities of Miami, Guayaquil and Tenerife, by a comparison assisted with a simulation for their indoor overheating hours and cooling demand, considering their climates, energy efficiency codes, and construction systems. These were: Miami, with two models (M1 with timber frame as the thermal envelope and M2 with a concrete block system), Guayaquil, with two models (G1 with the limitations for a dwelling with cooling system and G2 without it), and Tenerife with only one model. As a result, was found that Miami is the case with the higher consumption, which has a higher energy demand in a house of timber wall system than in a house of concrete block system, due to the thermal inertia. Despite that both models have the same usage time for the cooling system, meaning that more power was needed to reach the thermal comfort. Then, Guayaquil and Tenerife, are the cases that follows, with less consumption. While, according to the UNE EN 16798 methodology, in the indoor overheating hour evaluation in a year, Miami has the higher cases with a 31.43% of its hours in overheating for the timber frame system and a 22.88% for the concrete block system, followed by two cases in Guayaquil, with 4.2%, other with none, and also Tenerife with 2.43%. Nevertheless, the study showed that energy consumption is not necessarily related to the indoor overheating hours that a house could have. Given that, in the case of Guayaquil, where it doesn’t have any indoor overheating hour in all year, while Tenerife, with a similar energy consumption, has 2.43% of its hours in overheating. Due to the different parameters that the UNE follows in comparison with the cooling setpoints given by the CTE-DB-HE all over the year for the respective cases, because of their long warm seasons. Therefore, the study analyses the limits establish by the Spanish normative in relation to overheating, showing an overestimation assessment if the results with the UNE methodology are compared

    Enfermedades crónicas

    Get PDF
    Adherencia al tratamiento farmacológico y relación con el control metabólico en pacientes con DM2Aluminio en pacientes con terapia de reemplazo renal crónico con hemodiálisis en Bogotá, ColombiaAmputación de extremidades inferiores: ¿están aumentando las tasas?Consumo de edulcorantes artificiales en jóvenes universitariosCómo crecen niños normales de 2 años que son sobrepeso a los 7 añosDiagnóstico con enfoque territorial de salud cardiovascular en la Región MetropolitanaEfecto a corto plazo de una intervención con ejercicio físico, en niños con sobrepesoEfectos de la cirugía bariátrica en pacientes con síndrome metabólico e IMC < 35 KG/M2Encuesta mundial de tabaquismo en estudiantes de profesiones de saludEnfermedades crónicas no transmisibles: Consecuencias sociales-sanitarias de comunidades rurales en ChileEpidemiología de las muertes hospitalarias por patologías relacionadas a muerte encefálica, Chile 2003-2007Estado nutricional y conductas alimentarias en adolescentes de 4º medio de la Región de CoquimboEstudio de calidad de vida en una muestra del plan piloto para hepatitis CEvaluación del proceso asistencial y de resultados de salud del GES de diabetes mellitus 2Factores de riesgo cardiovascular en población universitaria de la Facsal, universidad de TarapacáImplicancias psicosociales en la génesis, evolución y tratamiento de pacientes con hipertensión arterial esencialInfarto agudo al miocardio (IAM): Realidad en el Hospital de Puerto Natales, 2009-2010Introducción de nuevas TIC y mejoría de la asistencia a un programa de saludNiños obesos atendidos en el Cesfam de Puerto Natales y su entorno familiarPerfil de la mortalidad por cáncer de cuello uterino en Río de JaneiroPerfil del paciente primo-consultante del Programa de Salud Cardiovascular, Consultorio Cordillera Andina, Los AndesPrevalencia de automedicación en mujeres beneficiarias del Hospital Comunitario de Til-TiPrevalencia de caries en población preescolar y su relación con malnutrición por excesoPrevalencia de retinopatía diabética en comunas dependientes del Servicio de Salud Metropolitano Occidente (SSMOC)Problemas de adherencia farmacológica antihipertensiva en población mapuche: Un estudio cualitativoRol biológico de los antioxidantes innatos en pacientes portadores de VIH/SidaSobrepeso en empleados de un restaurante de una universidad pública del estado de São Paul

    Evaluation of the energy consumption and overheating of homes in Miami, Guayaquil and Tenerife

    No full text
    Year after year, global warming is elevating temperatures all over the world, causing indoor overheating environments that are inhabitable, and increasing energy demand in housing. Given this global concern, the aim of the study was to evaluate the thermal behavior of the house in the cities of Miami, Guayaquil and Tenerife, by a comparison assisted with a simulation for their indoor overheating hours and cooling demand, considering their climates, energy efficiency codes, and construction systems. These were: Miami, with two models (M1 with timber frame as the thermal envelope and M2 with a concrete block system), Guayaquil, with two models (G1 with the limitations for a dwelling with cooling system and G2 without it), and Tenerife with only one model. As a result, was found that Miami is the case with the higher consumption, which has a higher energy demand in a house of timber wall system than in a house of concrete block system, due to the thermal inertia. Despite that both models have the same usage time for the cooling system, meaning that more power was needed to reach the thermal comfort. Then, Guayaquil and Tenerife, are the cases that follows, with less consumption. While, according to the UNE EN 16798 methodology, in the indoor overheating hour evaluation in a year, Miami has the higher cases with a 31.43% of its hours in overheating for the timber frame system and a 22.88% for the concrete block system, followed by two cases in Guayaquil, with 4.2%, other with none, and also Tenerife with 2.43%. Nevertheless, the study showed that energy consumption is not necessarily related to the indoor overheating hours that a house could have. Given that, in the case of Guayaquil, where it doesn’t have any indoor overheating hour in all year, while Tenerife, with a similar energy consumption, has 2.43% of its hours in overheating. Due to the different parameters that the UNE follows in comparison with the cooling setpoints given by the CTE-DB-HE all over the year for the respective cases, because of their long warm seasons. Therefore, the study analyses the limits establish by the Spanish normative in relation to overheating, showing an overestimation assessment if the results with the UNE methodology are compared

    MEGARA, the R=6000-20000 IFU and MOS of GTC

    Get PDF
    MEGARA is the new generation IFU and MOS optical spectrograph built for the 10.4m Gran Telescopio CANARIAS (GTC). The project was developed by a consortium led by UCM (Spain) that also includes INAOE (Mexico), IAA-CSIC (Spain) and UPM (Spain). The instrument arrived to GTC on March 28th 2017 and was successfully integrated and commissioned at the telescope from May to August 2017. During the on-sky commissioning we demonstrated that MEGARA is a powerful and robust instrument that provides on-sky intermediate-to-high spectral resolutions RFWHM ~ 6,000, 12,000 and 20,000 at an unprecedented efficiency for these resolving powers in both its IFU and MOS modes. The IFU covers 12.5 x 11.3 arcsec 2 while the MOS mode allows observing up to 92 objects in a region of 3.5 x 3.5 arcmin 2 . In this paper we describe the instrument main subsystems, including the Folded-Cassegrain unit, the fiber link, the spectrograph, the cryostat, the detector and the control subsystems, and its performance numbers obtained during commissioning where the fulfillment of the instrument requirements is demonstrated. © 2018 SPIE
    corecore